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Abstract—This paper introduces a process variability model to
determine the performance and yield of the Cell Broadband En-
gine (CBE) in 65nm SOI CMOS. The model incorporates spatial
(die-to-die), temporal (manufacturing process drift), and para-
metric dimensions, and provides microprocessor performance
tracking and comprehensive view on the process variability with
embedded ring oscillator measurement at the wafer level. It
extracts CBE performance regularity within die for the circuit
design and models, and reveals the semiconductor manufactur-
ing signatures in wafers and lots for process technology. The
model reduces performance estimation testing requirements by
surpassing conventional methods’ accuracy by 28%.

I. INTRODUCTION

Process variability has become a major challenge in de-
signing high-performance microprocessor, especially in 65nm
technology and beyond [1]. For a multi-core processor, within-
die process variation results in individual cores in the chip
to differ significantly in maximum supported frequency and
the power consumption. Die-to-die variation is tied to the
parametric and functional yield of a processor. In addition
to these spatial variation sources, longer time-scale variation
source induced by manufacturing process drift is measured and
characterized in this work. Both short-term and longer-term
variation signatures need to be considered for microprocessor
design, model, simulation, and technology development.

There are two distinct perspectives when dealing with
process variation (deviation of process from the nominal con-
ditions) in microprocessor production: one from design point
of view and the other from technology point of view. From
design perspective, a host of circuit and system architecture
techniques have been studied and exercised to ameliorate an
effect of environmental variation in process, supply voltage,
and temperature (PVT). These techniques include: dynamic
voltage / frequency scaling and adaptive body biasing to make
system more robust to threshold-voltage process variation;
adaptive supply voltage to tackle supply voltage variation; and
temperature-based voltage / frequency throttling to control the
die temperature.

From technology or manufacturing perspective, all the key
process variation sources need to be carefully modeled and
measured. Only when a variation is reliably captured in a
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Fig. 1. (a) Illustration of process-variation-aware design flow and this work’s

contribution. (b) Die photo for Cell Broadband Engine processor. 11 within-die
ring oscillators are scattered across a chip, marked in circles, as chip-variation
and performance monitors.

model, we can mitigate the variation in manufacturing, and
also understand the variation mechanisms to further counteract
using design techniques. It is, however, increasingly difficult
to model or predict process variability reliably, partly due to
the complicated nature of physical mechanisms for process
variation. Also, test structures to monitor and extract process
variation need to be carefully planned and designed to realis-
tically represent process variation in a product circuit, using
reasonable test time and cost.

To address the latter perspective, this paper proposes a
general representation method for process-induced variation,
exploiting spatial, temporal, and parametric information buried
in measurement data. Fig. 1(a) illustrates a process-variation-
aware design flow and the scope of this work. Specifically
we examine the performance variation of the Cell Broadband
Engine (CBE) in 65nm SOI CMOS - a nine-core micropro-
cessor, jointly developed by IBM, Sony and Toshiba. Fig. 1(b)
is a die photo of CBE and the locations of uniform embedded
ring oscillators (ROs) to keep track of time trend and spatial
variation of CBE.

There are three sources of correlations in any set of mea-
surable parameters: (1) Spatial correlation: within-die (WiD)
correlation in a given die, and die-to-die (D2D) correlation in
a given wafer; (2) Temporal correlation: correlation between
different wafers or lots, manufactured at different time frames,
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Fig. 2. (a) Definition of three variation dimensions: spatial (D2D and

WiD), temporal (manufacturing process drift or L2L variation), and parametric
dimensions (different devices / test structures being measured). (b) CBE’s
embedded RO measurement data in 65nm SOI CMOS is represented as a 3D
cube. (Each parameter is normalized to zero-mean and unit-variance.) For this
data, 11 ROs are implanted across CBE chip to monitor WiD variation of the
chip performance because ROs are known to have a high correlation with the
microprocessor performance.

caused by manufacturing processes’ drift and instability; (3)
Parametric correlation: correlation between different physical
parameters being measured, e.g. correlation between threshold
voltage (V3,) and RO delay (Tro) in the same chip.

Conventionally, “D2D variation” is often used as an um-
brella term which refers to “all” D2D variation components
that come from within-wafer (WiW), wafer-to-wafer (W2W)
and lot-to-lot (L2L). We differentiate these components in this
paper because each has its own systematic pattern that can
potentially be modeled and, thus, predicted. D2D in this work
will specifically refer to within-wafer D2D variation.

Fig. 2(a) illustrates three variation dimensions. Three vari-
ation dimensions are treated as orthogonal coordinates. Using
these coordinates, Fig. 2(b) shows a 3D representation of a set
of RO measurements embedded in a CBE chip. From the sliced
sections at the boundaries in Fig. 2(b), there exist correlations
to different degrees in any pair from the three dimensions.

An RO is used extensively in order to monitor the processor
performance and the core-to-core performance variability. Its
primary advantage is the ability to estimate the processor per-
formance and the parametric yield early in the manufacturing
— well before packaging — with a simple and inexpensive test.
It is known to well represent the actual maximum frequency
of a processor [2].

In Section II, a current process-variation model is briefly
explained, and a new model is proposed. Experimental results
based on hardware data sets from CBE in 65nm SOI CMOS
technology will be presented in Section III. An application is
discussed in Section IV, followed by conclusion.

II. VARIATION MODEL

We denote x as a measurable parameter of interest. It can be
a physical parameter such as channel length, oxide thickness,
or a parametric quantity from device (e.g. Vi, Lon, Log) Or
from a circuit (7ro, L4, Ig). Conventionally process variation
is decomposed into a D2D and WiD components [1]:
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x=x0+ Axpap + Az wip + Al res

22

TABLE I
NUMBER OF SAMPLES FOR EACH VARIATION DIMENSION.

Dimension Data set #1 Data set #2
Total lots 10 1
Total wafers 75 12
Dies per wafer 12 20
Within-die locations per die 11 1
Parameters 18 2,856
Total samples ~1.8 x 10° ~6.8 x 10°

where Az psp is inter-chip global variation, Ax y;p is intra-
chip spatial variation, and Ax,.s is the residual random
component which is not captured by Azpsp and Az yy;p.
The time-dependent or L2L variation is not factored in to a
conventional model because a manufacturing process drift is
difficult to model.
We propose a variation model which captures time- and
parameter-dependency in addition to spatial correlation:
X(t) = A(t)pO (t) + AXspatial(t) + AxXyes. 2)
Here m-by-1 x(t) is a collection (vector) of all m parameters
at time ¢. A(t) is a time-dependent mixing matrix, and
po(t) is the k key underlying parameters where typically
kE < m. AXgpaiiq(t) denotes any spatial variation which can
be interpreted as sum of WiD and D2D variation. D2D and
WiD variations are lumped together in our work because they
are both spatial variations in nature. Here discrete time, t,
refers to the index of a wafer or a lot that was fabricated at a
certain time, or it can simply represent week or month index.
The intention of this paper is not to present an accurate
model for each variation dimension, but to propose a general
modeling approach and its benefits which accrue in addition
to the conventional approach. Hence, each variation source (in
space, time and parameter) is modeled briefly in the following
section.

III. PROCESS VARIATION COMPONENTS

For our experiments, two sets of measurement data in 65nm
SOI CMOS technology are used. Data set #1 is measured from
CBE (see Fig. 1(b)) using a manufacturing-inline tester. 11
uniform performance-screen ROs are embedded on a micro-
processor chip to keep track of time trend and spatial variation
of the host chip. ROs are known to be a robust monitor
for microprocessor performance [2]. This data set contains
relatively rich spatial information in terms of D2D and WiD,
and temporal information (over 4 months) regarding the final
product (microprocessor) performance.

In addition, for data set #2, one lot was thoroughly tested off
from the manufacturing floor, using an automated parametric
tester. This data set includes 2,856 parameters from various
test structures including FETs, SRAM, and ROs. This set of
measurements are primarily intended for technology develop-
ment and device model-to-hardware closure. Table I arranges
the number of samples in each variation dimension for both
data sets.
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Fig. 3. Illustration of spatial variation from Data set #1 in Table I. (a) CBE’s
RO frequency (fro) variation in a wafer. (b) A strong radius dependency is
exhibited. It is important to characterize a systematic D2D pattern before
dicing and packaging.

A. Spatial Performance

The spatial-variation aspect has received a significant atten-
tion recently in wide range of design applications from leakage
power analysis, yield model, to SSTA [3]. In general, spatial
variation is decomposed into WiD and D2D components.
WiD variation is often induced by layout and topography
interaction with the processes, such as chemical-mechanical
polishing (CMP) and critical dimension variation in channel
length or metal wire lines. WiD spatial correlation functions
are extracted by posing and solving a constrained linear or
nonlinear optimization problem [4]. Wafer-scale D2D variation
is generally caused by equipment non-uniformity and other
physical effects such as thermal gradients and loading effects,
often exhibiting radial pattern or a slanted plane. Typically,
D2D variation within a wafer contains low spatial-frequency
component, and neighboring dies are likely to be highly cor-
related with each other. Fig. 3 illustrates CBE’s RO frequency
(fro) variation within a wafer (a) and the radius dependency
of fro (b). The observed “W”-envelope pattern renders a
donut-shaped wafer map. It is noted that die-index order can
be arbitrary thus may fail to identify important D2D variation
signature. Therefore, characterization of D2D variation before
the dicing and packaging stage is important to capture a
systematic D2D pattern.

B. Temporal Performance Tracking

A temporal variation originates from an accumulating drift
in process equipment operation, and temporal correlation em-
bodies a certain degree of redundancy among same parameters
in different wafers or lots that were processed sequentially
in time. From a manufacturing point of view, the temporal
variation is monitored and controlled via statistical metrology
and feedback, but it is not feasible to perfectly stabilize all the
manufacturing tools. Temporal variation is not easily captured
by simulation or model because of complicated nature of
manufacturing equipment drift. There are generally two cate-
gories of temporal variation in terms of the correlation period.
Short-term temporal variation originates primarily from non-
uniformity of process equipment and processing environment.
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Fig. 4. Tllustration of temporal variation: CBE’s performance-monitor (fro)

variation (normalized) as a function of time.
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Fig. 5. Tllustration of parametric variation: (a) First two principal components
and the directions of four physical parameters. (b) Cumulative variance
explained by principal components. The data set used for this analysis is
data set #2 from Table I.

We will focus on the longer scale for temporal variation —
the significant L2L variations due to process recipe or grade
change, as seen in Fig. 2(b) as radical color changes from one
epoch to an adjacent one. Fig. 4 exhibits CBE fro mean and
standard variation as a function of time, over the period of four
months. It is seen that as manufacturing processes mature after
a number of yield-learning cycles, the nominal fro stabilizes,
and the standard deviation generally decreases.

C. Performance by Parameters

Parametric correlations have been characterized by principal
component analysis (PCA) and its variants without consider-
ation of spatial or temporal correlations in the literature [5].
Different physical measurements carry some degree of corre-
lation. For example, FET characteristics Vi, Lo, Ion, and
ring gate delay Tro are correlated with each other. Fig. 5(a)
is a scatter plot of the first principal component (PC) and
the second PC weights for all 240 available chips from data
set #2, and directions of four physical parameters in terms
of the first and second PC’s. Among 2,856 parameters, four
important device/circuit characteristics (Tro, Iofr, Lon, and
Vi) are represented by vectors, and the direction and length
of each vector indicates how each variable contributes to the
two principal components (PC’s) in the plot. For example,
the first PC, represented in this plot as the horizontal axis, has
positive coefficient for active current but very small coefficient
for Tpp. It is also seen that Tro and I,p are linear but in
opposite directions, and so are Vi, and [,,. Fig. 5(b) shows
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Fig. 6. Relative variations in all spatial, temporal, and parametric variation
dimensions, calculated from data set #1.

cumulative variance explained by first 30 PC’s. It is noted
that 30 components explain approximately 85% of the total
variance of the given data set of 2,856 variables.

The correlation or redundancy in different parameters, if
properly captured in a model, can be exploited in a number
of applications. For example, a product performance can
be mapped to (or inferred from) a number of key device
characteristics.

D. Comprehensive Performance Variation

Fig. 6 shows relative variation for WiD, D2D, and
parameter-to-parameter (P2P) dimensions, as a function of
time. Measurements from CBE (Data set #1) are used for
this analysis. Each parameter is normalized to be zero-mean
and unit-variance for all dies and wafers/lots. As a result, for
any week, contributions from WiD, DID and P2P components
do not sum to 100%. There is a strong time dependency for
spatial, temporal, and parametric variation dimensions, and
in this data set there appears relatively less inter-parametric
variation than WiD and D2D variation. WiD and D2D varia-
tions are comparable in their contributions for the most weeks.
It is worthwhile to note that one variation source does not
dominate all the time: e.g. at week 1, D2D variation has the
most contributions (70.7%), but at week 18, WiD variation
has the most contributions (52.4%). If a temporal variation is
not considered in a model, its contribution will be added to a
random or residual variation component which is not explained
by either WiD or D2D variation. Therefore, the temporal
component in a process variation model needs to be monitored,
characterized, and modeled for a robust microprocessor design
and technology development.

IV. CHIP PERFORMANCE RECONSTRUCTION

The proposed process-variation model captures variation
sources in space, time and parameter, thus opens up opportuni-
ties for various practical applications. We discuss the missing
measurement estimation as an application of the proposed
3D process variation representation. Specifically the values of
CBE’s performance monitors are reconstructed using an actual
hardware data.

Volume electrical test using a semiconductor parametric
tester is prone to inaccuracies and data corruption induced
by a number of non-ideal test conditions — for example, mis-
calibration and imperfect probe contact to pads. The proposed
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TABLE 11
RMS ESTIMATION ERROR FOR CBE’S PERFORMANCE-BENCHMARKING
RO FREQUENCY.

Model One chip corrupted 6 chips corrupted
(Half of all available chips)
Die-wafer 2D 30.3% 32.0%
Die-parameter 2D 32.5% 40.0%
Wafer-parameter 2D 25.7% 30.5%
Proposed 3D 18.6% 28.6%
% improvement 28% — 43% 6.2% — 28.5%

3D representation can be utilized to accurately recover the
corrupted measurements by exploiting the 3D redundancies
carried by the existing measurements. In this experiment,
we suppose some data points are unavailable in the CBE
performance-tracking RO data, and they are estimated by 2D
models (considering only two correlation dimensions) and the
proposed 3D model. The first experiment is a case where one
chip from twelve chips is presumed corrupted, and is estimated
using 2D models and the proposed 3D model. The other case
is that six chips (or half of all available chips) are corrupted
for one wafer. The test data is recovered in the same fashion.
To be fair, estimation was iterated for all the data points for
one-chip estimation, or 10,000 randomized trials for six-chip
estimation. The average RMS errors are presented in Table II.
Each parameter is normalized to be unit-variance. Hence, RMS
error of 18.6% for 3D model refers to the error of 18.6% of
the standard deviation of original value being estimated. The
3D model is up to 43.0% more accurate than 2D models for
one-chip estimation, and 28.5% for six-chip estimation.

This experimental results show that the proposed 3D model
outperforms 2D models in chip performance reconstruction,
because it takes account of three variation dimensions si-
multaneously. A product performance can be, hence, reliably
predicted with the 3D model at the wafer level.

V. CONCLUSION

Performance and variation of CBE in 65nm SOI CMOS are
analyzed with the proposed comprehensive variation model
incorporating spatial, temporal, and parametric dimensions. In
addition to within-die and die-to-die variation, long-term lot-
to-lot variation is a significant variation component, and needs
to be considered for microprocessor design, model, simulation,
and technology development.
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