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Abstract—Process-induced variability has become a predomi-
nant limiter of performance and yield of IC products especially in
a deep submicron technology. However, it is difficult to accurately
model systematic process variability due to the complicated and
interrelated nature of physical mechanisms of variation. In this
paper, a simple and practical method is presented to decompose
process variability using statistics of the measurements from
manufacturing inline test structures without assuming any un-
derlying model for process variation. The decomposition method
utilizes a variant of principal component analysis and is able to
reveal systematic variation signatures existing on a die-to-die
and wafer-to-wafer scale individually. Experimental results show
that the most dominant die-to-die variation and wafer-to-wafer
variation represent 31% and 25% of the total variance of a large
set of manufacturing inline parameters in 65-nm SOI CMOS
technology. The process variation in RF circuit performance is
also analyzed and shown to contain 66% of process variation
obtained with manufacturing inline parameters.

Index Terms—Decomposition, principal component analysis,
process variation, statistical modeling, variability.

I. INTRODUCTION

PROCESS-INDUCED variation has become a predominant
limiter of performance and yield of IC products especially

in a deep submicron technology [1]. Variability is introduced
from various manufacturing processes such as stress, lithog-
raphy, deposition, etch, and chemical–mechanical planarization
(CMP). However, it becomes increasingly more difficult to ac-
curately model and predict systematic process variability due to
the complicated and interrelated nature of physical mechanisms
of variation. This paper proposes a statistical method to analyze
process-induced variability and separate systematic die-to-die
variation and wafer-to-wafer variation [2]. Fig. 1 summarizes
the definitions of four different scales of process variation.
Lot-to-lot represents process variation existing in different lots.
Wafer-to-wafer process variations lie in different wafers within
a lot. Die-to-die means variation in different dies within a wafer.
Within-die denotes variation in the identical device or circuit
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Fig. 1. Definition of four scales of process-induced variability. Lot-to-lot repre-
sents process variation in different lots. Wafer-to-wafer process variations exist
in different wafers within a lot. Die-to-die means variation in different dies
within a wafer. Within-die denotes variation in identical device or circuit within
a die.

within a die. In this paper, two ranges of process variations,
namely, die-to-die and wafer-to-wafer variations, are dealt with
because of the limitation in the data set available to us.

We exploit measurements from manufacturing inline bench-
marking structures (MIBS) that are available in any semicon-
ductor fab for fault detection and device characterization. Using
the proposed method and MIBS measurements in the 65-nm
SOI CMOS technology, we evaluate the relative amount of
systematic die-to-die and wafer-to-wafer variations in the total
MIBS measurements. Along with sensitivity analysis of circuit
performance to the variation parameters, the contributions of
systematic die-to-die and wafer-to-wafer variations can be
evaluated separately. Our method also allows us to assess the
effect of random variation, which is left as residual and cannot
be explained by systematic variation components.

The rest of this paper is organized as follows. Section II ex-
plains the notion of MIBS. In Section III, we describe the pro-
posed decomposition method in detail. Experiments of the pro-
posed method are discussed in Section IV. Further applications
are introduced in Section V, followed by the conclusion.

II. MANUFACTURING INLINE BENCHMARKING STRUCTURES

MIBS in this paper collectively refer to assorted test
structures that are measured in a manufacturing line using
a parametric tester for the purpose of defect diagnosis, dc
device characterization, and model-to-hardware correlation [3].
For example, FET devices of different sizes and layouts are
designed and fabricated for the purpose of regular monitoring
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of critical electrical parameters such as threshold voltage, drive
current, and leakage current. Typical MIBS include FETs,
ring oscillators, back-end capacitance/resistance test struc-
tures, and ground rule validation macros. Wafers in volume
production also carry test structures in kerf area to keep track
of device/technology characteristics. While a prior work used
MIBS data to identify the most correlated device characteristics
with respect to circuit performance [4], its full potential has
not been explored. In our paper, we exploit a collection of
MIBS measurements to find the most representative die-to-die
and wafer-to-wafer variations based on the assumption that
key device-level parameters such as threshold voltage, gate
length, and oxide thickness are embedded in well-chosen MIBS
measurements.

III. DECOMPOSITION METHODOLOGY

In this section, a multivariate statistical analysis technique is
presented to separately monitor die-level and wafer-level sys-
tematic variations by observing manufacturing inline measure-
ments. Due to the complexity of semiconductor manufacturing
processes and environmental factors, die-to-die and wafer-to-
wafer variations are more or less intercorrelated. Separation of
die-to-die variation and wafer-to-wafer variation makes it easier
to conceptualize and analyze a given process variation and its
physical mechanism, than otherwise leaving it as a lumped vari-
ation.

A. Principal Component Analysis (PCA)

Let us assume that a multivariate signal of interest, , is a
vector of dimension . The basic idea of PCA is to find the
components so that they explain the maximum
amount of variance of possible by linearly transformed com-
ponents. One usually chooses to reduce the dimension
of the data. PCA can be intuitively defined using an inductive
form. The direction of the first principal component (PC) is
defined by

(1)

where is of the same dimension as the data vector .
Thus, the first PC is the projection on the direction in which
the variance of the projection is maximized. Having determined
the first PCs, the th PC is determined as the PC of the
residual

(2)

The PCs are then given by . In practice, computation
of the can be simply accomplished by singular value de-
composition (SVD) on the covariance matrix .
If the covariance matrix is not known a priori, it is often
estimated based on ensemble of data samples. The is the
eigenvector of that correspond to the largest eigen-

Fig. 2. Four most dominating (ordinary) principal components that contain
both wafer-to-wafer and die-to-die variations.

values of . For convenience, we define an -by- matrix
, thus yielding

(3)

The PCA is a useful multivariate tool to reduce the dimen-
sion of data set, to reduce noise, or to visualize the representa-
tive features of the given multidimensional data. There has been
a growing interest in PCA in the semiconductor manufacturing
industry for process failure analysis [5], [6]; however, to the au-
thors’ knowledge, there was no previous work to treat die-to-die
or wafer-to-wafer variations separately using PCA.

Fig. 2 shows the four most dominating PCs that correspond to
the four most representative process variations existing in a large
set of inline measurement data from more than 1000 MIBS pa-
rameters. Different lines in each graph represent variations for
13 different wafers. It is noted that the first PC contains sig-
nificantly more die-to-die variation than wafer-to-wafer vari-
ation. The second PC has both die-to-die and wafer-to-wafer
variations that are comparable in their contributions. Analysis
of process variation using ordinary PCA is difficult because the
correlated behavior between die-to-die and wafer-to-wafer vari-
ations is intractable to understand or model.

B. Constrained Principal Component Analysis (CPCA)

The CPCA is a method to extract constrained PCs (CPCs)
which have the same properties as the original PCs but are con-
strained to a predefined subspace [7]. In our case, only die-to-die
and wafer-to-wafer variations are considered. We, thus, have ex-
pressions for the most dominant CPC

(4)

where and are the orthonormal subspace in
die-to-die and wafer-to-wafer directions, respectively. Similar
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Fig. 3. Comparison of concept of ordinary PC with proposed CPC.

Fig. 4. Flow chart of proposed CPCA algorithm for variability decomposition.

to the ordinary PCA, the CPCA finds CPCs in a sequence of
significance. It is useful to extract the PCs of die-to-die or
wafer-to-wafer variations separately for a better understanding
of the sources of process variations. In the CPCA, PCs can
vary only in a guided dimension which is consistent with the
die-to-die or wafer-to-wafer variation.

Fig. 3 visualizes the difference between (a) the traditional
PCA in the left diagram and (b) the proposed CPCA in the
right diagram. Conceptually, the PCA finds orthogonal coor-
dinates which do not generally coincide with die-to-die and
wafer-to-wafer variations. Therefore, understanding process
variation using the ordinary PCs would be perceptually difficult.
On the other hand, the CPCA restricts the PCs to the die and
wafer directions, leading to direct visualization of the variation
on die-to-die and wafer-to-wafer scales. Only a few CPCs may
be examined for this purpose because only a fraction of all the
CPCs are sufficient to capture most of the information as with
the case of PCs.

C. Decomposition Algorithm

Fig. 4 illustrates how the CPCs can be iteratively obtained.
Because the variability of the data is scale-dependent, the PCA
is sensitive to the scaling of the data to which it is applied. Thus,
at the preprocessing stage, the data set of each MIBS parameter

is made zero-mean and unit-variance in order to treat each in-
line test parameter insensitive to arbitrary scaling (e.g., different
units) and bias (e.g., systematic offset).

Subsequently, all the MIBS parameters which contain
meaningless data points (e.g., system default values for failed
measurement) are filtered out. In our implementation, a simple
Gaussianity test based on kurtosis analysis serves well to detect
distributions with significant outliers [8]. Kurtosis (the ratio of
the fourth central moment to the square of the variance) is a
measure of peakedness of a distribution

(5)

where is a mean of . In our case, the parameters with the
kurtosis, greater than eight (having considerably fatter tail than
the normal distribution which has kurtosis of three) or less than

2 (having thinner tail than the normal distribution) are flagged
unusable. This kurtosis range is generous enough to retain most
of single-modal distributions without any outliers.

In the next step, CPCA is performed to calculate the most
dominating CPC for die-to-die and wafer-to-wafer variation
spaces. Equation (4) is implemented by first averaging original
data across all wafers for die-to-die CPC and across
all dies for wafer-to-wafer CPC, then finding the first
PC on both

(6)

(7)

These CPCs are calculated in the same way for PCs, by ap-
plying SVD to the covariance matrices, and

. The CPC of larger variance is selected as an
output, based on the following test:

(8)

The data set is, then, transformed to be orthogonal to the
space spanned by the selected PC. This routine is iterated for
the residual data set until a certain stopping criterion is satis-
fied.

The resulting PC is constrained to represent either wafer vari-
ation or die variation. A CPC representing die-to-die variation
may serve as a snapshot of a given lot or technology. Based on
this systematic die-to-die pattern, the characteristic of a given
lot, or generally a given technology iteration can be monitored,
thus allowing fast and pertinent feedback to manufacturing
team. Typically, only a few CPCs are sufficient to capture
majority of the variation in the whole MIBS parameters, and
they are uncorrelated by construction. Therefore, the first few
die-to-die variation signatures obtained via CPCA method are
likely to reflect physically different process variation sources.
For example, the most dominant die-to-die CPC may capture a
radial pattern potentially induced by rapid thermal annealing.
A CPC for wafer-to-wafer variation in the same lot suggests
nonuniformity of process tools used. The correlation study
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Fig. 5. Variance of first 25 CPCs. Variance of (a) individual and (b) cumulative CPCs are shown.

TABLE I
CATEGORY OF MIBS USED IN THIS EXPERIMENT

of die-to-die CPCs with physical process parameters (such as
lithography, doping, and CMP) will link how each die-to-die
CPC is related to physical processes and remains as future
work.

IV. EXPERIMENTS

A. Manufacturing Inline Parameters in 65-nm SOI Technology

For this paper, 1109 parameters from MIBS in a preproduc-
tion 65-nm SOI CMOS technology are used. There are 520 sam-
ples (40 dies per wafer for 13 wafers) for each inline parameter.
The diameter of wafers used is 300 mm, and all 13 wafers are
processed in a same lot. There are assorted types of MIBS: FET
test structures (e.g., threshold voltage, on and off current), ring
oscillators, SRAMs, and capacitance as arranged in Table I. The
diverse MIBS measurement data from various test structures en-
sures that the resulting process variation outputs are representa-
tive.

Both ordinary PCA and constrained PCA were performed on
the given data set for the purpose of comparison. The computa-
tion time was not more than one minute to obtain all the CPCs
for this 1109-by-520 inline data matrix. Fig. 5 shows the vari-
ance which can be explained by the first 25 PCs and CPCs for
the ordinary PCA and CPCA, respectively. A variance for each
PC is shown as well as the cumulative variance. The most dom-
inating PC and CPC account for 34% and 31%, respectively,

of the total variance of the original data set. Using the first two
CPCs, 57% can be explained which is slightly less than 61%
for the unconstrained PCs. It is also noted that the CPCs do
not reach 100% asymptotically because the die or wafer varia-
tion alone cannot fully represent some intertwined relationship
between the two. Nonetheless, the advantage of separating the
die and wafer components of systematic variation justifies the
slightly less coverage of variance by the same number of CPCs
compared to the ordinary PCs. In the cumulative variance plot,
there is typically a knee region where cumulative variance satu-
rates after a few PC/CPCs. The low-order PC/CPCs beyond sat-
uration correspond to mostly noise components, thus, of little
interest for analysis.

Table II lists the type (either die-to-die or wafer-to-wafer) and
variance of the first six CPCs. This table also shows that the first
and second CPCs capture the die and wafer variation, respec-
tively. The dominant die-to-die variation and wafer-to-wafer
variation alternate along the progression of CPCA iteration for
the first four CPCs as expected: after one type of variation is sub-
tracted, the other type is likely to be predominant in the residual
data at the next CPCA iteration.

Fig. 6 shows the three dominant die-to-die CPC images. They
are fitted by the second-order polynomials on the 40 available
values for these die-to-die CPCs. The polynomial fitting was
done to interpolate the missing values in some chip sites for
the purpose of visualization. The first die-to-die CPC shows the
slightly off-centered radial pattern. This CPC is the most promi-
nent systematic variation by far, explaining 31% of the variance
of the whole data set.

Fig. 7 exhibits the wafer variation captured by the second,
fourth, fifth, and sixth CPC corresponding to the first four
wafer variations. The second CPC (the most dominating
wafer-to-wafer variation) alone represents 25% of the total
variance of the whole data set. It is observed that the dominant
die variation (31%) is larger than the dominant wafer variation
(25%), which is consistent with the recent trend that a die
variation is increasingly more important due to the larger wafer
size (300 mm) than before, as predicted by the International
Technology Roadmap for Semiconductors (ITRS) [9].
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TABLE II
TYPE, INDIVIDUAL, AND CUMULATIVE VARIANCE EXPLAINED BY FIRST SEVEN CPCS

Fig. 6. First three die-to-die CPCs shown as a wafer map. Note that second-order polynomial fitting was performed for these images for purpose of visualization.

Fig. 7. First four wafer-to-wafer CPCs.

B. Process Variation Analysis on RF Product Performance

CPC decomposition can be applied to a new data set of a to-
tally different nature. For this paper, we used a bench-tested
RF self-oscillation frequency for a static current-mode
logic (CML) frequency divider. A typical phase-locked loop
(PLL) block uses a loop structure to lock a free-running voltage-
controlled oscillator (VCO) to a desired frequency. A primary
frequency divider is one of the key PLL components because
it must divide VCO operating frequency into a desired low-
ered frequency as a high-speed circuit [10]. Measurement of
maximum operating frequency is important for yield
and performance variation analysis, and it is shown that
closely tracks the divider self-oscillation frequency [11].

Fig. 8. Self-oscillation frequency of a frequency divider represented by first
four CPCs obtained from (left) MIBS measurements and (right) their residuals.

was measured from the same dies and wafers on which the
previous MIBS used for the CPCA reside. Fig. 8 illustrates the
sequence of CPCA in three dimensions to visualize how
can be reconstructed by adding one component at a time using
the first four CPCs.

The bottom left surface shows (z-axis) from different dies
and wafers. The top left image is the first CPC, having only
die variation. The next image displays the added contribution of
the second CPC (wafer variation) on top of the previous image.
The images in the right column represent the residuals (original
minus reconstructions). This figure demonstrates how original
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TABLE III
VARIATION IN RF CIRCUIT PERFORMANCE EXPLAINED BY CPCS OBTAINED WITH MIBS MEASUREMENTS

Fig. 9. Dominant die-to-die variation for three evolving 65-nm technology it-
erations.

data can be successively reconstructed from or, equivalently, de-
composed into a few CPCs. Note that these CPCs are calculated
from the previous inline dc test data and not from this which
is being analyzed. A weight for each CPC is obtained by pro-
jecting data on to each CPC space. Table III lists how much
variance of RF circuit’s performance is explained by each CPC
obtained using MIBS measurements. The first four CPCs retain
65.5% of all the information of variation, which is a sig-
nificant amount especially because the test data (frequency of
RF circuit) and the training data for CPC calculation (MIBS
measurement data) are quite different in nature. The physical
mechanism of how each device-level parameter (MIBS) affects
complex RF circuitry such as the frequency divider is beyond
the scope of this paper. However, the proposed algorithm and
experimental data show that the process variation is substan-
tially systematic, and therefore, the CPCs obtained from MIBS
measurements can explain a significant portion of the process
variation in complex RF circuits.

V. FURTHER APPLICATIONS

A. Technology Snapshot Monitoring

The most dominating die-to-die variation using CPCA cap-
tures the most representative systematic variation on a die-to-die
scale and can serve as a snapshot of technology iteration. More
than 650 MIBS parameters are used for each 65-nm SOI tech-
nology generation. Each MIBS parameter contains 255 samples
(15 dies per wafer for 17 wafers). Wafers used are 300 mm
and belong to a same lot for a given generation. Fig. 9 shows
the dominating die-to-die CPCs for three technology genera-
tions, fitted by the second-order polynomials on the 15 avail-
able values of the first CPC. The polynomial fitting was done
to interpolate the missing values in some chip sites for the pur-
pose of visualization. The run time for CPCA was less than one
minute for each generation case. The first generation shows a
highly irregular pattern on a wafer scale, presumably from a
process anomaly that is common in the first preproduction cycle.
In the second and third generations, considerably milder slightly
off-centered radial patterns are observed [4].

B. Efficient Sampling for Measurement and Yield Analysis

The most dominant die variation, the first CPC in the pre-
vious case in Section IV, contains the most information (31%)
about systematic within-wafer variations. Therefore, an intelli-
gent sampling scheme can be proposed for cost-effective mea-
surement and quick yield analysis, based on the first CPC. For
example, if only two chips per wafer are allowed for measure-
ment, it would be reasonable to sample the minimum and max-
imum points in the first die-to-die CPC. One can also selectively
measure some sensitive sites to effectively evaluate how much
a wafer is compatible to the die variation pattern(s) without sac-
rificing a great deal of accuracy.

VI. CONCLUSION

In this paper, a statistical method is presented to separate vari-
ability components, particularly die-to-die and wafer-to-wafer
components, using only measurements from manufacturing in-
line benchmark structures. The proposed decomposition algo-
rithm is generic and can be easily extended to accommodate
other scales of process variation, e.g., within-die or lot-to-lot.
A major contribution of the proposed decomposition method
is that it allows effective and practical decomposition and vi-
sualization of systematic variations using only an ensemble of
manufacturing inline electrical data. This analysis can be imple-
mented in a near real time to provide rapid and pertinent feed-
back to technology development.
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