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principal-component analysis. This approach presumes that

In recent years, synthetic aperture rad@aRs have been different clutter types have.diffe.rent statistics. The work in
used to detect manmade targets and distinguish them fromR&f- 7 models the full polarimetric radar clutter as the prod-
naturally occurring backgrounds. A SAR-based automated uct of a gamma-distributed textural vangb_le and a Qaussmn
target recognitio{ATR) system requires a fast and effec- random vector, whose covariance matrix is determined em-
tive discriminator to suppress natural clutter, detect the Pirically. The numerical values for the covariance-matrix
presence of a target, and classify the type of target from its elements calculated from real. SAR data are different for
radar returrt. Such a system relies on models for different trées, shadows, grass, and mixed scrub. In Refs. 8 and 9,
components of radar returns, namely, the returns foifa each pixel of a SAR image _correspondmg to a specific type
ferent types of manmade targets, natural clutter, and back- Of target at a given pose is modeled as the sum of two
ground noise. One typical approach is to model the targetmutually independent Gapssmn random vectors that repre-
return as a parametrized deterministic signal pattern, andSent target return and white noise. The target pose and type
the clutter and noise as stochastic processes characterize@® estimated by maximizing the likelihood ratio of the
by their statistics. In Ref. 2, the clutter and noise are mod- joint conditional Gaussian probability density.
eled as Gaussian random processes with given covariance The preceding approaches can also be applied to mul-
matrices, and the target return is modeled as a prespecifiediple radar images, i.e., to images of the same scene ob-
spatiotemporal pattern multiplied by complex-amplitude tained from different sensors and/or at different resolutions.
parameters. In Ref. 3, the target return is composed of con-The signal model in Ref. 10 generalizes that of Ref. 2 by
tributions from several scattering centers. Each scattering-making each image point a vector, whose components rep-
center component contains an amplitude and a phase deterresent sensor data collected at different bandwidths. In
mined by the radar’s carrier frequency and look angle, plus Refs. 11 and 12, radar images at different resolutions are
the scattering position centers. The unwanted part of the modeled as Markov random fields, and the parameter val-
radar return, i.e., the noise, is assumed to be a white Gaussues in their statistical models are used as the basis for clas-
ian process. In Ref. 4, the target signal is taken to be asification or texture segmentation.
Gaussian intensity function, the clutter a sinusoid with ran-  Recent studies of multiresolution radar images have re-
dom phase, and the noise a Gaussian process. vealed promising potential for solving target identification
Another approach to radar-signal modeling is to assume problems. The work in Ref. 13 shows that a processor
that the target return and the unwanted pafttter plus based on an autoregressive model of multiresolution
noise are random processes characterized by different sta-millimeter-wave SAR imagery provides useful discrimina-
tistics. In Ref. 5, the target return has deterministic and tion between natural clutter and manmade targets. In Ref.
random parts, with the latter arising from scattering- 14, ultra-wide-bandUWB) foliage-penetrating SAR data
amplitude and scattering-center uncertainties. In Ref. 6, thedemonstrated that adaptive-resolution imaging can exploit
radar signal is a target return multiplied by an uncorrelated the aspect-dependent reflectivity of manmade objects. Ref-
speckle noise, whose covariance matrices are estimated byrence 15 shows that discrimination can be accomplished

1 Introduction
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via adaptive multiresolution processing based on the differ-  Motivated by the work of Refs. 23 and 24, we undertake
ent variation-versus-resolution patterns of targets and clut-a complete physics-based analysis of target detection and
ter. classification using SAR imagery. The operational condi-
The aforementioned treatments are founded more ontions are extended to a more realistic case: 2-D, chirp-pulse
provisional signal models than on rigorous, physics-basedwaveform, and full polarimetric data collection. The radar
theory. In particular, they do not take into account the ef- scenarios of interest include stripmap-mode and spotlight-
fects of transmitter pulse shape, antenna beam patterns, anthode SARs. The targets consist of a repertoire of geometri-
free-space wave propagation that relate the radar returncally simple reflectors, including a specular mirror, a dihe-
from targets and clutter to their respective physical charac-dral reflector, a trihedral reflector, and a tophat-shaped
teristics via an electromagnetic scattering model. In Refs. reflector. The point of choosing these reflector types is to
16 and 17, the return signals corresponding to spotlight- deal with several fundamental wave-scattering mecha-
mode and stripmap-mode SARs are constructed via a com-Nisms: single reflectiortspeculay, directional double re-
prehensive consideration of radar-pulse transmission andflection (dihedra), triple reflection(trihedra), and nondi-
propagation. The resultant return signal is formulated as arectional double reflectioftophaj. The clutter is assumed
spatial integral of a Lambertian reflectivity pattern within o originate from a rough reflecting surface. Both the target
the region of interest and the Green’s function correspond- and clutter returns are modeled from electromagnetic scat-
ing to the mode of radar operation. This approach, however, tering theory. _ _ _
is not directly derived from a rigorous electromagnetic scat- 1 he purpose of adopting electromagnetic theory is not to
tering theory, and therefore does not capture certain impor-Produce an accurate and comprehensive simulation of SAR
tant features, such as aspect-angle dependence, in the retudfn@ges, but rather to provide a fundamental signal-model
from a specular object. The work in Ref. 18 claims to build uUnderstanding for optimizing certain SAR signal-
a physics-based model for the UWB radar return of a Processing schemes. Our goal is neither to develop a spe-
specular target, from an observed fact that a UWB pulse cific target-recognition algorithm, nor to evaluate empiri-
incident on a flat reflector produces two return pulses, be- C&lly such an algorithm by processing the real SAR data
cause of the discontinuities at the reflector’s edges. This 21d comparing the results with those from other algorithms.
phenomenon, although predictable from scattering theory, INStéad, we intend to study the performance of a generic
can fail to capture other significant features in the radar [@rget-recognition approach from a theoretical, model-
return. In Refs. 19 and 20, a target-return model for UWB based perspective. Specifically, we aim to answer the fol-

SAR is constructed from physical optics and the physical 'OWi”G questions. Under our assumed signal, c[utter, and
theory of diffraction. The pulse shape is taken from the noise models, how much gain does the optimum likelihood-

UWSB specification, and the antenna beam pattern, although:]?;'grtsggsit drizogrzéﬁzlgr?t\i/gn%\llesr At\gei:]'f:“zoc:g'c?;forﬁcagw
not included, could be incorporated by multiplying the re- h of thi inis d he adapti 9 pl ; :
turn by a location-dependent weighting function. In Refs much of this gain is due to the adaptive-resolution arrange-
19 and 20. however. the region of interest is onl ) the ara.\- ment, polarimetric arrangement, or whitening of the clutter

. - ’ 9 only P spectrum in the optimum processor? And is it plausible to
bolic trajectory corresponding to the footprint of a fixed

: approximate the complicated optimum recognizer with a
target at the SAR Image plane, rather than_ the whole 2-D simpler scheme under some circumstances? Although we
image plane. In this sense, the processor is only 1-D, not

2-D. M h ted part of th dar sianal d have not translated our generic scheme of an optimum
-. vioreover, the unwanted part of thé radar signal does | q|ingod-ratio recognizer into an actual SAR ATR algo-
not include the clutter scattered from the environment. It

. . _ . rithm sophisticated enough to handle data in the real world
only consists of the white Gaussian noise.

. . X . (and henceforth do not compare the results of our perfor-
_ Explomn_g the mulpresolutlon characteristics in SAR mance analysis with the performances of other SAR ATRs
imagery using a physics-based approach seems promisingihe answers to the previous questions shed light on imple-
The mathematical formulation of the radar-return signal mnenting this algorithm as well as on understanding the ef-
and chirp-compression processor in Refs. 21 and 22, t0-facts of different features in this algorithm.
gether with a physical-optics model for the target scatterer,  The remainder of this work is organized as follows. Sec-
were used in Refs. 23 and 24 to provide a first-principles tion 2 describes the signal and processor models for the
analysis for discerning specular returns from diffuse returns stripmap-mode and spotlight-mode SARs. The signal of
in synthetic aperture radar imagery by means of their dis- concern includes three components: target return, clutter,
tinct multiresolution patterns. Because the scattering pat- and noise. The types of processors are conventional,
tern of a specular reflector is directional rather than isotro- adaptive-resolution, and Neyman-Pearson optimum. Sec-
pic, its resulting optimum processing duration is shorter tion 3 presents performance results for multicomponent tar-
than that of a conventional chirp-compression processor.get detection. We compare the numerical values of these
This analysis verifies the empirical results from real SAR results, namely receiver operating characteristics, for differ-
data that were reported in Ref. 14. However, the scenarioent processors and target scenarios. Targets constituting
considered in Refs. 23 and 24 is restricted to a simple case:only a few numberthree of reflectors are chosen to study
1-D, continuous-wave, nonpolarimetric, stripmap-mode im- the effects of simple reflectors’ features on the likelihood-
aging of a single reflector embedded in clutter. In addition, ratio-based processors. Sections 4 and 5 develop optimum
the target recognition in these cases is restricted to binarylikelihood-ratio classifiers for multicomponent targets with
detection. To establish a comprehensive first-principles known and unknown positions, and present the numerical
analysis for target detection and classification in SAR im- results of their performances, namely the probabilities of
agery, a significant amount of work remains to be done. correct classification, in comparison with those from the
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figuration consists of a dimensionless discrete coordimate
along the cross-range direction, which is the pulse-number
index, and a continuous-time coordinat@along the range
direction, corresponding to the time delay of the radar
return®® The only difference between stripmap- and
spotlight-mode operations is the normal direction of an-
tenna aperture. In stripmap-mode operation, this normal is
fixed at—2', so that as the aircraft flies, the antenna-beam
footprint sweeps out an elongated strip on the ground at
distancel /tan(y) from the projection of aircraft trajectory
and with widthA ;.L/d sin(y), whered is the radar’s antenna
diameter and . is its wavelength. In spotlight-mode opera-
tion, however, the antenna’s normal direction is adjusted
along the flight path to constantly point toward the region
centered atX,y,z)=[0,L cot(),0], so that it “spotlights”

a fixed footprint region of width\ .L/d sin().

In both the stripmap- and spotlight-mode scenarios, the
radar emits a train of modulated pulses which then propa-
gate to the target region, where they are scattdred
flected by the object and then propagate back to the receiv-
ing antenna. The waveform collected by the receiver is
therefore a superposition of target return, clutter, and re-
ceiver noise. Because we are mainly interested in discrimi-
nating manmade objects from natural backgrounds, we con-
sider the target return to have come from a geometrically
simple reflector or reflectors, and the clutter from a random
rough reflecting surface. Both are treated via electromag-
netic theory.

2.1 Radar Return Models

We assume that the transmitter radiates a repetitive train of
pulses with periodrs, complex envelop@(t), and carrier
angular frequency).s ! from an aperturss, . The result-

ing electric field on the surface of this aperture is

(b)

Fig. 1 Flight geometry for a 2-D SAR: upper panel is the stripmap Ea(ra,t)= R{ Ua(7P1) YU (Ta) >, p(t—mTy)
mode, and the lower panel is the spotlight mode. m=—o

Xexp —iQgt)|, (1)

classifiers based on the conventional SAR processors. A
more complex target scenario that has closer resemblance _
to a realistic condition is considered: four distinct targets wherer, is the spatial coordinate vector withi, in the
comprising nine to ten reflector components. The probabil- radar’s rest frame[l, represents the polarization of the
ity of correct classification for this complex target scenario ransmitted ﬁe|dEa’ P; is the peak transmitter power,
is difficult to compute. Instead, we develop upper and =(o/€g)¥? is the natural impedance of free space, and
:‘g\;v?hrisboggg:bﬁi?d grestgnt é\/l_onteb(;afr lo smlwulgmon results vy iis the stationary spatial antenna aperture pattern in
P y. Section 5 1S a briet conclusion. the radar’s rest frame. We use an elliptical-Gaussian spatial
) pattern to model the finite aperture dimensions of the trans-
2 2-D SAR Signal and Processor Models mitter antenn&*
The stripmap and spotlight SAR modes we consider are
sketched in Fig. 1. The radar is mounted on an aircraft —
flying with velocity v =Xv at an altitude ol m, hence its Uan(ra) =
position at timet is given by the vector,=Xvt+2zL. The
direction —z'=—Zsin(y)+ycos@) in Fig. 1 is on the  wherex, is the coordinate in the along-tra¢&ross-range
plane perpendicular to the velocity vector and tilted direction, y, is the coordinate in the across-traiange
downward from the horizontal directiop with angle ¢, direction, anda, anda, are the radii ofS, associated with
making L’ =L/sin(y) the range to the ground. The radar the along- and across-track directions, respectively. The
transmits a sequence of pulses toward the region of interestcomplex envelopg(t) is assumed to be a chirped Gauss-
on the ground. The time-domain structure of this 2-D con- ian pulse with duratioTy and chirp bandwidtiW,:

12
exf — (Xa/a)?= (ya/a)?l,  (2)

ma,ay
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p(t)=exd —i mWot?/ To—4(t/Ty)?]. ©)

The return of the incident radar wave from a target can
be modeled via scattering theory. For an incident mono-
chromatic plane wave with propagation directign angu-
lar frequency ), and wave numbek={/c, namely,
Ei(r,t)=ReEgexdi(kk r—Qt)]}, the scattered wave in
the far-field zonekr>1 is*®

287k, Q) Epexpg —iQD) . (4)

Herer is in the local coordinate whose origin is at the
object center, an&(T ,k; ;) is the object’s bistatic scatter-
ing tensor as a function of the incident directikn scat-
tering directiont =r/[r[, and (angulaj frequency(). The
transmitted radar pulse is a superposition of monochro-
matic plane waves. Therefore the field scattered from the
target can be obtained by summing all the scattering fields
corresponding to the individual monochromatic plane-wave
components. The result is a superposition of spherical
waves modulated by the scattering tensors.

The radar return is collected by the receiving antenna
and is taken to have a phasor complex envelpfig, con-
sisting of a train of return pulses separatedliy. Because
the returns associated with two adjacent pulses are ordi-
narily nonoverlapping, we can extract fronit) a 2-D sig-
nal r(m, ), in which the discrete inder represents the
pulse number, and the continuous timsepans the interval
(—T42,T4/2]:

©

y(h~ > r(mt—mT,—2L'/c).
m oo

(5

The polarimetric signature that is embedded in the scatter-
ing function can be exploited by choosing different incident
(U,) and receiving @) polarizations. In what follows, we
define the aircraft flight directior to be vertical polariza-
tion, and the directioy’, which is orthogonal t& and the
antenna’s nominal direction’, to be horizontal polariza-
tion. In all cases we consider théH, VV, andHV com-
ponents of the radar returi/H, being identical toHV
because of reciprocity, will not be explicitly treated. We use
the boldface symbol to denote the fully polarimetric return
signal, namely,

Myu(m, 7)
r(m,7)= ryv(m,7) |.
rqv(m, 7)

(6)

By means of the Fraunhofer approximation, we can de-
rive the 2-D complex polarimetric target return from Egs.
(1) through(6). It can be shown that for a simple scatterer
located at X,y,z)=[A,,A,+L’ cot($),0] away from the
scene centerx(y,z)=[0,L' cos@),0], the 2-D complex
polarimetric target return associated with stripmap-mode
operation &%
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rtarge( m,7)

= dQ
f_wﬁ P(Q)exp{—iQ[7—2A, cog p)/c]}

\/P_TaXay
4

2 2
Xug(Qc+Q) —

exp(i2k{L"+ Ay cog )

+[A, sin(¢) 12/2L " Dexp ik(moTe—A)/L']
xexp{ —[ (ke +K)admoTs—A,)]%/2L "2
X exp{ —[ (ko +k)a,A, sin()1/2L "2}

Z'L" +xmuTg/L' —XA,— YA,
.9 = ~ - =

¢ |Z'L" +XmuT/L" —XAx—YA|’
—Z'L'=XmuTg/L' —XA— VA,
|Z'L" +XxmuTg/L" —XA,—YA,|

XU

Qe+ Q]-Uy, (7)

and the 2-D complex polarimetric target return associated
with spotlight-mode operation3$

rtarge( m,7)
oo

fdQ

5 P(Q)exp{~iQ[ 724, cogy)/c]}

\/P_TaXay
4

7]er

X ud(Qe+ Q)2 expli2k L'+ A, cog )

+[A, sin(y) 12721 Pexpiko(muTe— A )/L']
X exp{ —[ (ke+K)a,A,J%/2L" 2}
X exp{ — [ (ko k)a,A, sin(y)]%/2L "2}

- [ ZL"+xmuTs/L'—XA,— YA
XU, S’ > Y2y

L +XmuTo /L —KA,—JA,]’
— L —muTo /L — XA~ A,
2L +xmuT,/L —KA,—JA,|

Q.+Q]-U,. 9

In Egs.(7) and (8),

Uy Uy
U,=| Uv|; U.=|Uy 9
Uy Uy

are the transmitter and receiver polarization tensors, respec-
tively, and the modified scattering tensgiris related to the
scattering tenso® defined in Eq.(4) as follows,

Qe+ Qo - o o
=i d9) S (i Qe Q)
=S(Fe.f; Qe+ ), (10

wherer s~ —T; is the unit direction connecting the scatterer
center to the antenna aperture center. Notice that the only
difference between Eq$7) and (8) is the cross-range an-
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tenna beam pattern, exp[ (k. +K)a(mvT—A)T%2L "2} for z
the stripmap mode, and exp[ (k. +K)a,A,]%/2L "2} for the Yot rormal !
spotlight mode. , g

The target types considered in this work include a specu-
lar, dihedral, trihedral, and tophat reflector. The specular
reflector we model is a square flat plate with sides of length ;
2p; and a perfectly conducting surface. Its bistatic scatter- x\ s :

ing tensor can be calculated from physical optics. The di-

hedral reflector we consider consists of two perfectly con- »
ducting rectangular plates 1 and 2, whose edges meet at a

right angle. The two plates are squares with sides of length
\J2p;. The orientation of this dihedral is defined by two
unit vectors: the dihedral axis,; is the intersecting edge
of the two plates, and the normal aXig..is perpendicular

to N,s and bisects the 90-deg angle formed by the two
plates. Four terms in the reflected field from this dihedral
are significant: specular reflection from plate 1 to the radar;
specular reflection from plate 2 to the radar; double reflec-
tion from plate 1 to plate 2 to the radar; and double reflec-
tion from plate 2 to plate 1 to the radar. To calculate these 4
terms, we parallel the approach in Ref. 27. The two single-

reflection terms are obtained as was done in the speculartig- 2 Reflector types. Upper left: specular: upper right: dihedral:
reflector case. The two double-reflection terms are obtained!oWer 1eft: tihedral: lower right: tophat.

by using geometric optics to calculate the reflection from
the first plate to the second, which is then used as the inci-
dent wave for calculating the double-reflection contribution
to the radar return via the physical-optics approximation.
The analytic expressions for the scattering tensors of apattern of a trihedral reflector.

specular and a dihedral reflector are given in Ref. 26. Th h f : f fecil ducti
The trihedral reflector consists of three perfectly con- _ 1Ne topnat reflector consists of a periectly conducting
ducting rectangular plates 1, 2, and 3, whose edges meet afY/INder sitting on top of a circular perfectly conducting
right angles. The three plates are squares with sides ofplate, Fhe overall sh.ape is that of a tophat. The rgdlus and
length \2p,. Each pair of plates intersect at an edge. The :Eg 2?:33;?f|;r]a?ec¥2n§er 3&2 gcs)tsrgﬁ’]ewmls Lh;t(r)?’g'lff ct):we
. ; : | ..
three intersecting edges form a rectangular coordinate sys tophat is located on the ground. The entire reflector, includ-

tem (X,,Yp,2p). Hence the orientation of the trihedral re- . . . ) o
flectorbcaa bt:a defined by the spatial relation between the "9 the C|_rcular plate and th_e cylinder, IS symmetric to;he
axis. Unlike the case of trihedral or dihedral, there is no

tnhgdral Coordmgtg §ystenxl(,yb,zb) and_ the quglnal co- need to specify the orientation of a tophat. The scattered
ordinate systemxy,z). In the default orientation, the tri- field from a tophat reflector consists of five terms: the

hedral sits on tqp (,Jf .the glroundAand fgcesAtheAradar IO(:""t'or‘specular reflections from the top plate, the side of the cyl-
atm=0, so thaw, is identical toz andy=(%+Yp) V2. In inder, the bottom plate, and the double reflections via the
general, the trihedral reflector can rotate aroundzthethe paths of the bottom plate to the cylinder, and of the cylinder
(Xo+Y5)/ V2, or the (X, +Vy,)/\/2 axis. In most literature  to the bottom plate. Like a dihedral, a tophat has most of its
on radar target recognition, the trihedral reflector is mod- scattered field coming from the double-reflection terms. But
eled as a point scatterer with an isotropic scattering pattern.different from a dihedral, the double reflections from a
We adopt a more electromagnetics-based approach to caliophat are strong for all incident directions due to the sym-
culate its scattering coefficient. Similar to the case of dihe- metric geometry of the cylinder. To obtain a double-
dral, we compute the distinct physical-optics terms of the reflection term of the scattering field, we use geometric
radar return corresponding to the rays with different optics to calculate the reflection from the bottom plate to
bounces. They are specular reflections from plates 1, 2, ancthe cylinder, or the cylinder to the bottom plate, and then
3: double reflections via the paths of plate 1 to 2, 1 to 3, 2 use this geometric-optics field as the incident wave for cal-
to 1, 2to 3,3to 1, and 3 to 2; and triple reflections via the culating the double-reflection contribution from the cylin-
paths of plate 1t0 2t0 3, 1to 3t0 2, 2to 1to 3, 2to 3 to der or the bottom plate via the physical-optics approxima-
1,3to 1to 2, and 3 to 2 to 1. Except for a very limited tion.

spatial regime, the triple reflection terms dominate the  The specular, dihedral, trihedral, and tophat reflectors
double- and specular-reflection terms. To obtain a triple- embody different types of scattering mechanisms. The ra-
reflection term of the scattering field, we use geometric dar return from a specular reflector is a single bounce; the
optics to calculate the reflection from the first plate to the return from a dihedral or a tophat is mostly double bounces;
second, and the second to the third, which is then used aswhile the return from a trihedral is dominated by triple-
the incident wave for calculating the triple-reflection con- bounce terms. The distinction in terms of the number of
tribution to the radar return via the physical-optics approxi- bounces makes significant differences in the polarimetric
mation. This method parallels the one used in dihedral cal- patterns of these reflectors’ radar returns. Figure 2 illus-

—_————

culation. Compared with the simple assumption of a point
scatterer, the electromagnetics-based approach is able to
characterize the broad but nonisotropic spatial scattering
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trates the four reflector types.

In addition to the target return we have just modeled, we
need a physics-based approach for treating clutter. Clutter
typically refers to the radar return from anything other than
the desired target. In this study, clutter is assumed to be
reflection from an infinite-extent rough ground surface. To
calculate the clutter return, we apply a backpropagation
formulatiorf! and the Kirchhoff approximatioff The re-
sultant analytical expression for clutter return is in the form
of a 2-D integral over the ground plamg—y,

VPr0Zaa,

exp(i2k.L")
2mwc?L’? PiZke

I cutted M, 7)~ —

Xsin(¢) f: j:dxdeb

X p[7—2ypcog )/ c]

x exd (ike/L" —k2aZ2/2L"?) (xy—muv Tg)?]
X exf (ike /L' —kZaZ/2L 2)y; sirt(y)]

X exp{i 2k [ yp cog ¢) +h(xy ,yp)sin(4) 1}

Run(Xp,Yb)
X | Ruv(Xp,Yb) |,
Riuv(Xp,Yp)

11)

for stripmap-mode operation, and

JPr0Zaa,

2 12

exp(i2k.L’
2mc L AiZkel’)

I clutted M, 7) ~ —

xsin) [~ [ oy,

Xpl7—2y,cog¢)/c]

NG
Sirt(y)

(T(Xp,Yo) TT(xp,Y0)) = 8(Xp—Xp) 8(Yp—Yp)

(|Run(Xp,Yp)[%)
X| (REn(Xp»Y) Ruv(Xp,Yb))

Note that the correlation matrix in Eql4) includes
the polarimetric behavior of the clutter return, which
can depend significantly on the geographic region
under inspection. We assume there is a statistically
uniform terrain texture within the radar footprint. Therefore
the correlation matrix in Eq.(14) is approximately
independent ofx, and y,. Empirical worK suggests
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Xexgike /L' (Xp—muTg)?]

x exd — (kZa2/2L"?)x2]

X ext (iko /L' —k2a2/2L"2)y2 sir?( )]

X expli2k[ Yy cog ) +h(Xp,Yp)Sin( ) 1}

Run(Xp+Yb)
X| Rywv(Xp,Yb) |,
Ruv(Xp,Yb)

12

for spotlight-mode operation. In these expressions,
h(xp,Yp) is the surface height akg,yy), Ry, Ryy, and
Ryy are theHH, VV, andHV components of the dyadic
reflection tensoR. The clutter in Eqs(11) or (12) can be
interpreted as the sum of contributions from all points on
the ground plane, whose scattering coefficients are propor-
tional to the local reflectivities.

We model h(xb!yb)1 RHH(Xb!yb)! RVV(Xblyb)r and
Ruv(Xp,Yp) in Egs.(11) and(12) as stochastic processes.
Paralleling the work in Refs. 21 and 22, we define a field
transition coefficient:

Run(Xp,Yp)
T(Xp,Yp) =exf i 2k:h(Xy ,yp)sin(4) ]| Ruv(Xp.Yo) |.

Ryv(Xp ,Yb)
(13

Assuming thaty(h?)>\., and that the reflection coeffi-
cientsR,; are independent of the surface height profile

we can takeT to be a zero-mean, circulo-complex, white,
vector Gaussian random process, fully characterized by

(Run (X, Yo) RUy(Xp,Y5))  (Run(Xp,Yo) Riv(Xp . Yb))
(IRvv(Xp,Yp)| 2>
(REH(Xp,Yo) Ruv(Xp, b)) (RUMXp,Yb) Riv(Xp Vb))

(REv(Xp,Yo) Ryv(Xp:Yb)) |
(IRuv(Xp,Yp)|?)

(14)

that: all the off-diagonal components in E¢l4) are
insignificant except for theHHXVV terms; the HH
XHH and VVXVV terms are approximately equal; and
the strength ofHVXHV term is significantly smaller
than that of the HHXHH term, unless multiple
scattering is prominent. Thus, in our radar clutter model,
we use
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A2 can have a very different return duration than that of a point
(T(Xb,yb)TT(XE,,YE,D:_—Cﬁ(Xb—Xé)5(yb—y{)) scatterer. Thus our adaptive-resolution processor will be
sirt(y) optimized overx to achieve the best detection performance
1 0 for such an extended target.
P In spotlight-mode operation, a standard interpretation of
x| p* 1 0f, (15) the radar return is to conceive it as a convolved form of the
0

2-D Fourier transform of the terrain reflectivity profile,
namely the tomographic rendition of the terrain reflectivity
distribution?®2° An adaptive-resolution spotlight-mode
SAR processar first dechirps the radar-return signal along
the range and cross-range directions. The dechirped signal,
which is still continuous for the range time, is sampled to
become a 2-D discrete-time signal. The sampled signal, af-
ter rearrangement by a polar formatter, then undergoes a
2-D discrete Fourier transform operation. In this processor,
the cross-range processing duration, which is the angular
width of the polar-format annular region, and the range
processing duration, which is the radial width of the polar-
format annular region, are variables. To be specific, let the
cross-range indern of the discrete dechirped signal chosen
for further processing be from m,/2 to m,/2, and let the
1 0 O range index for further processing be from n,/2 ton,/2.
Thus m, and n, represent the cross-range and range pro-
x| 0 1 0f. (16) . : ) ) .
cessing durations, respectively. To be consistent with the
0 01 notation in Eq.(17), we define

where O<|p|<1 and G<e<1.

The final element in our radar signal model is receiver
noise. Typically, this is thermal noise, and has a white spec-
trum. In this work, for both stripmap- and spotlight-mode
operations, the receiver noisg,s{m, ) is assumed to be a
zero-mean, circulo-complex, vector Gaussian stochastic
process that is white in all its domains, namely its discrete-
time indexm, its continuous-time parameter and its vec-
tor (polarimetrig domain. Thus it is completely character-
ized by the following correlation matrix,

<rnoisém1T)r;rwisém,!T,»: N05[m—m']5( T—17")

Both of the unwanted components of the radar return, the )
clutter, and the noise are stochastic in our model. Because 2\/§L To

they have completely different physical origins, we assume Ma= kkeawTs' Na= T (18)
that they are statistically independent of each other.
29  SAR Processor Models Thus for the samex, the processing durations of the

) ) ) adaptive-resolution stripmap-mode SAR and the spotlight-
In this work, two types of SAR image processing systems mode SAR processors are identical. The casel corre-
are considered: an adaptive-resolution processor and asponds to the conventional spotlight-mode SAR processor.
whitening-filter processor. An adaptive-resolution processor — Whereas the adaptive-resolution schemes just described
is a conventional SAR processor with adjustable processingcan enhance SAR image resolution, they do not, in general,
durations. In stripmap-mode operation, the incoming radar represent optimum receivers for binary detection of a de-
return is passed through chirp compression filters in both terministic target return embedded in stochastic clutter and
the cross-rangédiscrete-timg¢ and rangecontinuous-timg ~ nojse. The optimum Neyman-Pearson processing scheme
domains. The output from these chirp compression filters is for a stripmap-mode SAR signal uses a filter to whiten the
then video detected to form a radar intensity image. The clutter plus noise, followed by a matched filter correspond-
impulse responses for the chirp compression filters are  jng to the target-return waveform passed through the whit-

ening filter, followed in turn by video detection, sampling,

halm]=exq (—ik¢/L' —kZaZx?/2L'2)(muT,)?] and a threshold test. The form of the whitening filter is
determined by the covariance function of the clutter-plus-

and (17) noise component of the radar return. The architecture of a
spotlight-mode whitening processor is essentially the same

h2(7)=exp[(iwW0/T0—4fI'§)72]. as that for the stripmap-mode whitening processor. The

only differences being that the spotlight-mode whitening
When the resolution parameter=1, hy[ m] is the complex processor must use time-shift compensation in its front end,
conjugate of the cross-range-dependent factor in the radarand, of course, different impulse responses for its whitening
return from a point scatterer. Similarlyiy(7) is the com- ~ and matched filters. _ .
plex conjugate of the range-dependent factor in the radar. 1he whitening-filter processor is conceptually important
return from a point scatterer. The point-scatterer radar re- in that it is the Neyman-Pearson optimum processor for the

turn is obtained by carrying out the integral in E8) under ~ target detection problem. As such, its receiver operating
the assumption that 1A,=A,=0, 2. Q>Q within the characteristic—its detection versus false-alarm probability

. . = . behavior—bounds the performance of any realizable pro-
bandwidth, and 3. the scattering tensrof a point scat- cessor. By comparing the detection performance of an

terer is the identity tensdr'. A conventional 2-D stripmap  adaptive-resolution processor with that of a whitening pro-
SAR processor uses chirp compression filtefpm] and cessor, we can see how far the former’s detection perfor-
h,(7) arranged(by settingk=1) to be matched filters for  mance is from the ultimate theoretical limit. By comparing

the radar return from a point scatterer. An extended targetthe detection performance of the optimized adaptive-
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resolution processor with its conventional-procegser 1) tion (AP ,A5)=[mvas,CTp/2 cosg))]. We assume that the

limit, we can quantify the importance of treating extended ;- - : —
targets differently from point scatterers. {#,} are independent and uniformly distributed [@)2).

Two target-location conditions are considered: 1. the
P AP . P AP i -
3 Multicomponent Target Detection (a5 ’Ay)} are known; and 2. the(.AX ,Ay)}'are.z mdepen .
] ) dent random vectors that are uniformly distributed within
Targets in real SAR campaigns, such as tanks, are cOm-giyen uncertainty areas.
posed of small reflectors. In this section, we deal with the = cConsider first the detection of a multicomponent target
detection problem of the targets with multiple reflector \ith random phases and known reflector locations. To ac-
components. ) ) ) complish the Neyman-Pearson optimum detection scheme,
A multicomponent target is a collection of simple reflec- ;e first pass the radar retur(m, 7) through the whitening

tors located at different positions. The radar-return signal filter, leading to a complex envelope after the whitening

from a single reflector located ah(,A,,0) with respectto fjjter, satisfying:

the scene center can be obtained from E@s.(stripmap

mode or (8) (spotlight modé Because we neglect multiple

scattering between different reflectors, the radar-return sig-

nal from a multicomponent target is the sum of the contri-

butions from all its individual scatterers. On the other hand, when the target is abseftypothesisH,), and

the clutter and noise components in the radar return are

unaltered by the change of target. M

The multicomponent target detection problem is a binary gm, r)~ Z exp(i;&p)sp(m— my,7— ) +w(m,7) (22

hypothesis test: determine whethetkaown multicompo- p=1

nent target is present or absent from the given radar image

CorruptEd with clutter and noise. Complete information when the target is presemypothesig{l)' Herew(m,T) is

about the multicomponent target includes the geometric the clutter-plus-noise after the whitening filter, which is

type, size, material constitution, orientation, and center lo- \yhite inm, 7, and polarimetric domains, arg is the out-

cation of each reflector, and the phase of the radar return g i ;

from each reflector. An effective Ft)arget detection scheme put of rp from the Wh-ltem-ng filter. When the spatial sepa-
rations between the individual target components are large

need not necessarily take all of these parameters as given : ; P ; "
. . ; ... enough, the following orthogonality condition will prevail:
Indeed, it may not be feasible to simultaneously cope with 9 9 9 y P

variations of all of these parameters. In this section, we

s(m,7)~w(m,7) (21

o

choose to investigate two cases: each target component has * t
a random phase; and each target component has a randorm;m fodTSp(m_ My, 7= 7p) - §(M—Mg, 7= 7¢) =0
phase and a random position. 23)
In keeping with the aim to quantify, from a fundamental
principles viewpoint, the target-recognition performance .
advantage of polarimetric adaptive-resolution processors ag®f P7#d. The reason is thas,(m—m;,7—7,) or s(m
compared to conventional SAR imagers, the multicompo- —Mq. 7~ 7q), the footprint of reflectorp or g, has nonva-
nent target models chosen for investigation here are not ashishing values only within a finite area on the,(r) plane.
complicated as a real-world object, such as a tank or truck. Thus when the two reflectors have a large spatial separa-
tion, eithers,(m—m,,7—7,) or (m—my,7—74) has to
3.1 Multicomponent Target Detection with Unknown be zero at every point on then(r) plane. Under the or-
Phases/Positions thogonality condition, which we assume to be true in all
The binary hypothesis testing problem for the 2-D radar that _follows, the Ilkellhoc_)dzeratlo for the binary hypothesis
return of anM-component target can be formulated as fol- (€St in Eqs(21) and(22) is
lows: the IF complex envelope of radar return is
p§H1(3|H1)

(M, 7) =T ciutted M, 7) + I noisd M, 7) (19 AS= p§H0(3|Ho)

when the target is absefttypothesisHy), or it is M P .
M =p1;[l exr{—m_E J, drsh(m, 7)-s,(m, 7)

r(m,r)wpg1 exqi:ﬁp)rp(m—mp,r— 7o) I clutted M, 7)

x1g

2’ m;w Jt:drsg(m—mp,r— Tp)-S(M, 7)

(24)

1 noisd M, 7) (20

when the target is presenthypothesis H;). Here
Fetuted M, 7) @Nd oM, 7) are clutter and noise complex
envelopes, respectively, as modeled in Sec. 1. The phase
represents thfa incoherence of' th'éh target component, 1 o
anq the 2-D time delaynf,,7p) is proportlongl to the lo- lo(X)= — d b exp(X coseh).
cation of thep'th target component4},A}) via the rela- 2w Jo

wherel, is the modified Bessel function of zero order:
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Fig. 3 GLR detector for the multicomponent target with unknown phases and positions.

The Neyman-Pearson optimum detection scheme for this M
binary hypothesis test is a threshold detector based on theH max

likelihood ratio (LR), which can be simplified to

[’

>

m=—ow —

M

oo

lof 2 drsi(m—m,,7—7,)-s(m, 7)

p=1

say Hq
>

< B

say Hg

(29

where the threshol@ is chosen to meet the constraint on
the false-alarm probability. ~

When, in addition to the phase§p,}, the target-
component delay time§(m,,7,)} are also random vari-
ables, it becomes difficult to write down the likelihood ratio
for the binary hypothesis testing problem. It is possible
(and useful to formulate the generalized likelihood ratio
and develop a detector scheme on that bdslhe gener-
alized likelihood ratio i8>

—2 Och

m=—o —

xsh(m, 7)-s,(m, 7)

X1o| 2

Z fjc drs;(m—mp,f— Tp)-S(M, 7)

|

(26)

So the generalized-likelihood-rati@GLR) detector based
on Eq.(26) can be written in the following form:

=1
p Mp . 7p

!

say Hq
>

< B

say Hg

2 i dTS;(m—mp,T—Tp)‘S(m,T)

m=—o —

J

(27)

The GLR detector is basically an LR detector that uses
maximum-likelihood estimates of the component delays as
though they were the true reflector locations. The architec-
ture of this GLR detector is sketched in Fig. 3.

Performance analysis for the GLR detector involves
level crossing theory for a 2-D random field. Helst8m
provided a comprehensive treatment for the calculation of
probabilities of detection and false alarm for a 1-D radar
signal. He approximated the value Bf, from a GLR de-
tector with the value oP from a LR detector with known
position at a high signal-to-noise ratio. FB, he pre-
sented an analytical approach derived from the level cross-
ing theory of a stationary 1-D random process, which is
valid for smallP when the uncertainty region for location
exceeds the resolution length of the intensity profile after
the matched filter. Shapiro et #i.presented a finite-bin
hypothesis-test approach for calculatiRg, and P of a
1-D radar return. Based on these works, we developed for-
mulations for evaluating the probabilities of detection and
false alarm of the 2-D GLR detector. The details can be
found in Ref. 26. We only present some numerical ex-
amples.

Suppose that the target of concern consists of three iden-
tical square specular reflectors at different locations. For all
target components, the half length of each square reflector
plate, p;, is 0.5 m, and the plate’s normal directionzs
The chirp bandwidthWy=200 MHz, the clutter-to-noise
ratio CNR=4.283x 10 2 (noise dominant and all the re-
maining parameter values are the same as those in Table 1.
For the target with known positions, the center locations of
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Table 1 Table of parameter values for SNCR calculations.

Flight parameters

Radar parameters

Reflector parameters

aircraft altitude antenna radii target radii 4
L=5000m a=a,=1lm p=15m 4
aircraft speed Tx power relative permittivity T
u=100m/s Pr=1W e,=10+i5
slant angle radar frequency HV clutter strength
=45 deg fe=Q27m=10 GHz e=0.2 +
pulse-repetition period ~ HHX V'V correlation )
Ts=10ms p=0.57
pulse width
To=0.05 us
chirp bandwidth
W= 200 MHz
the three reflectors with respect to scene center are (a)

(Ay,A,)=(0,0), (=7,—3), and(5,—5) (in units of meters
For the target with random positions, the center locations of +
the three reflectors are uniformly distributed within square 4
uncertainty regions centered @;0), (—7,—3), and(5,—5). T
Two sets of specifications for these uncertainty regions are +
considered. In the first set, the edge lengths of the square T
uncertainty regions for components 1, 2, and 3 are 4, 6, and
4 m, respectively. In the second set, the edge lengths of the
square uncertainty regions for components 1, 2, and 3 are 3,
3, and 3 m, respectively. Figure 4 plots these two uncer-
tainty specifications.

Figure 5 plots the receiver operating characteristics
(ROCs of the LR detectors for the example target with
unknown positions. The figure includes both stripmap- and
spotlight-mode results. There are three curves in each
panel, corresponding to the behavior of the LR detector for 4
the multicomponent target with no position uncertainty, T
with position uncertainty specification 1 in Fig. 4, and with
position uncertainty specification 2 in Fig. 4. Note that the
figure is plotted on probability-paper axes to permit accu-
rate display of both higlinear unity and low (near zerp (b)
probability values. We first notice that, for the same target,
spotlight-mode operation has better detection performanceFig. 4 Specifications for the uncertainty-region geometries. Upper
than does stripmap-mode operation. The reason is that thepanel: uncertainty specification 1. Lower panel: uncertainty specifi-
spotlight-mode target return has higher signal-to-noise- cation 2 Notice that f(tolgl(.)) Is Ithe Seene Somer of the antenna foot-
plus-clutter-ratio(SNCR values than the stripmap-mode print area. The aircrait fiies along the x direction.
target return for all individual components. The physical
reason behind this behavior is also clear: because spotlight-
mode operation illuminates the target for a longer time du-
ration than the stripmap-mode operation, its postfilter signal
strengths are correspondingly higher. In addition, two phe-
nomena in the numerical results in Fig. 5 are consistent
with intuition: 1. when the precise information on the target
components’ locations is lost, the detection performance of The target detectors presented so far are Neyman-Pearson
the GLR detector is degraded; 2. the larger the uncertaintyoptimal, i.e., they optimally combine polarimetric,
regions are, the greater this degradation becomes. Finallywhitening-filter, and adaptive-resolution processing. As in
we see that the ROC curves in Fig. 5 that correspond to theour work on single-component target detectignesented
stripmap- and spotlight-mode operations have different in Ref. 26, the target detection performance of optimum
slopes. This is a consequence of different target-return multicomponent target processors must exceed that of con-
spectra(along the cross-range directiohetween the two  ventional SAR processors for such targets. In this section,
synthetic-aperture operating modes. we explicitly compare the receiver operating characteristics

3.2 Multicomponent Target Detection:
Neyman-Pearson Processor Versus
Conventional SAR Processor
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one full-resolution(xk=1) polar-format SAR imager for
spotlight-mode operation. In addition, instead of the fully
polarimetric signal dealt with in the Neyman-Pearson pro-
cessor, only one single polarization is considered in the
conventional SAR processdghere we choos¢iH). The
target detectors after the SAR imager are similar to their
counterparts in Neyman-Pearson processors: they sample
this output image according to the available information on
target-component locations and calculate the likelihood ra-
tio or generalized likelihood ratio.

The receiver operating characteristics for these conven-
tional SAR multicomponent target detectors can be calcu-
lated via techniques similar to those used for the Neyman-
Pearson SAR processtrFigure 6 compares the receiver
operating characteristics of the conventionafull-
resolution SAR processor, the full-polarimetric Neyman-
19—‘Pe7—07 0001 01 05 09 0999 1 Pearson processor, and the scal@ingle-polarized

P adaptive-resolution processor when the target-component
F locations and radar-return amplitudes are exactly known.
The target scenario is different from that specified in Fig. 5.
In this case, the multicomponent target consists of three
specular reflectors wittp;=1.7m and the same known
(Ay,Ay) positions as the one in Fig. 5. The clutter-to-noise
ratio is set to be 8.5610 4. The other parameters are
identical to those used in Fig. 5. Figure 7 also compares the
receiver operating characteristics of these three processors
when the target-component locations and radar-return am-
plitudes are exactly known, but with a different parameter
set. In Fig. 7 all the parameter values are identical to those
used in Fig. 5. Figure 8 is a comparison similar to Fig. 7
when the target-component locations are independently and
Do.1 uniformly random within 2-D uncertainty regions. It is
clear in all cases from Figs. 6—8 that the Neyman-Pearson
processor has a better detection performance than the con-
0.001 ventional SAR processor. Thus the motivation for studying
the polarimetric, whitening-filter, adaptive-resolution pro-
cessor is verified: we have demonstrated from a first-

0.999

09
05"~

P
Do.1

0.001

0.999

0.9

0.5

1e-Pe7_07 0001 01 05 09 0999 1 principles approach t_hat this kind of processor indeed out-
performs the conventional full-resolution SAR processor in
F terms of not only single-component but also multicompo-
nent target detection.
(b) The superior target-detection performance of the

Neyman-Pearson processors is the result of their having

Fig. 5 Receiver operating characteristics. Three specular reflectors: hlgher SNCR values for the target components. Three fac-

likelihood-ratio detector for target with no position uncertainty tors are responsible for this SNCR advantage: the effect of
(dashed dot curve); GLR detector for target with position uncertainty the whitening filter, the adaptive-resolution effect, and the
specification 1 (solid curve); and GLR detector for target with posi- polarimetric effect. In the multicomponent target examples
tion uncertainty specification 2 (dashed curve). The upper panel is we have considered so far, noise dominates over clutter.

the stripmap-mode operation, and the lower panel is the spotlight-

mode operation. Thus the whitening filter does not have a major contribu-

tion. The adaptive-resolution effect can be very important
when the size of the reflector is much largstripmap and
spotlight modg or smaller(spotlight modg than the diam-
of the Neyman-Pearson processors with those of the con-eter of antenna aperture. The polarimetric effect in a
ventional SAR processors to quantify the former’s perfor- Neyman-Pearson processor can enhance the SNCR value
mance advantage. by a factor up to 2. In Fig. 6, the performance gap between
The conventional SAR processors for a multicomponent the conventional SAR processor and adaptive-resolution
target are straightforward extensions of the single-reflector processor and the gap between the adaptive-resolution pro-
versions that were described in Sec. 2. In contrast to thecessor and polarimetric Neyman-Pearson processor are
Neyman-Pearson processors that possess a bank of matchdabth salient. Therefore, the performance improvement of
filters for the target's component reflectors, a conventional the Neyman-Pearson processor due to adaptive-resolution
SAR processor has only one full-resolutiok=1) chirp- processing is as significant as that due to polarimetric syn-
compression SAR imager for stripmap-mode operation, or thesis. In Figs. 7 and 8, the polarimetric effect is more
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PF Pe
(b) (b)
Fig. 6 Receiver operating characteristics: conventional SAR pro- Fig. 7 Receiver operating characteristics: conventional SAR pro-
cessor (solid curve) versus polarimetric (dashed dot curve) and non- cessor (solid curve) versus polarimetric (dashed dot curve) and non-
polarimetric (dashed curve) Neyman-Pearson processors, multi- polarimetric  (dashed curve) Neyman-Pearson processors,
component target with random phases, three specular reflectors likelihood-ratio detector, multicomponent target with random
with p,=1.7 m; and CNR=8.56x10"4. (a) is the stripmap-mode op- phases, and three specular reflectors. (a) is the stripmap-mode op-
eration, and (b) is the spotlight-mode operation. eration, and (b) is the spotlight-mode operation.

fication. In this section, we extend our previous results for

target detection problems to multicomponent target classi-

fication problems with known reflector positions. We apply

the Neyman-Pearson or conventional SAR target detectors

. e we have already developed to form Neyman-Pearson or

4 Multicomponent Target Classification conventional SAR target classifiers. We also come up with
with Known Reflector Positions a simple method for assessing the performance of these

Target detection is binary target recognition: is a particular classifiers.

target present or not? A normal automatic target recognition L

system must deal with aN-ary problem: ofN=2 target 41 Classification Scheme

types, which ongif any) is present, based on the radar- A multicomponent target classification problem is formu-

return information? This problem is also known as classi- lated in the following manner. Le{m,r) be the radar re-

salient than the adaptive-resolution effect because the cho
sen target size renders the full resolution close to the opti-
mum resolutiorf®
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Fig. 8 Receiver operating characteristics: conventional SAR pro-
cessor (solid curve) versus polarimetric (dashed dot curve) and non-
polarimetric (dashed curve) Neyman-Pearson processors, GLR de-
tector, multicomponent target with random phases and position
uncertainty specification 2, 3 specular reflectors. (a) is the stripmap-
mode operation, and (b) is the spotlight-mode operation.

turn from a multicomponent target after passing through a
whitening filter. Therefore, it has the unwanted clutter-plus-
noise component whitened to unity spectral density. Then,
following Egs. (21) and (22), if H; denotes that targat
among allN possible targets is preses{m, r) can be writ-

ten as follows:

M;
under H;:  s(m,7)= 21 EXp(i&pi)spi(m—mpi,q-— Toi)
p=
for i=1,..N.

+w(m,7) (28

Herew(m, 7) is the vector clutter-plus-noise complex en-
velope after the whitening filter. By construction it is white

in the cross-range-tim@n), the range-time7), and the po-
larimetric (vecto) domains. Likewise,s,i(m,7) corre-
sponds to the postwhitening-filter radar-return complex en-
velope from theg’th component of the'th target when the
component is located at the scene center. The time delays
myi and 7, for this component are determined by its actual

location. The phasegsp,i} are independent random vari-
ables that are uniformly distributed withif,2); they rep-
resent the incoherence of each target component with re-
spect to other components as well as the noise. When the
spatial separations between the individual target compo-
nents are large enough, the following orthogonality condi-
tion prevails[similar to the condition in Eq(23)]:

>

m=—®

i drs(m—m;,7—7)-5(m—m;,7—7))=0 (29)

for any two components located at different positions. Fur-
thermore, the radar return from a specular or trihedral re-
flector is approximately orthogonal to that from a dihedral
or tophat reflector due to the fact that the radar return wave
from a specular or trihedral reflector is odd bounced, while
the radar return wave from a dihedral or tophat reflector is
even bounced. Table 2 enlists the correlation of the com-
plex radar-return waveforms corresponding to a specular,
dihedral (with 0, 45, or 90-deg orientation angjeophat,
and trihedral reflector, all with the edge length of one
meter. The numerical values in Table 2 confirm that the
specular and trihedral returns are approximately orthogonal
to the dihedral and tophat returns.

We can develop a target classifier for a repertoire of
multicomponent targets based on the single-target detec-
tors. Based on a MAP rule, a single-target detector can be
constructed by passing the radar-return signal through a
bank of matched filterématched to all target reflectorand
then combining the outputs from the matched filters. Spe-
cifically, the likelihood ratio for MAP target detection is

pr\Hl(rlyer---’rM|Hl)

pr\HO(rlerv---arM|H0)

l1(s)=

M
=m[[l exd —Emllo(2|r ), (30)

where hypothesisl; means the target is abseht; means

the target is presenE,, is the energy of then'th compo-
nent return, andy is the zero-order modified Bessel func-
tion. Here,r is the vector of the matched filter outputs
sampled at the proper times; it has complete information
about the whole radar-return signal needed for the classifi-
cation operation. At the target detector’s output stage, a
value equal or proportional to the likelihood ratio is com-
pared with a threshold level to decide on the absence or
presence of that target. When there is more than one pos-
sible target type, we can pass the radar return through a
bank of target detectors, one for each target type. The re-
sulting real-valued output levels,... Iy are the likelihood
ratios of conditiondd q,...,Hy with respect to conditiofd
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Table 2 Correlation coefficients of various target waveforms. The correlation coefficient of two com-
plex waveforms is defined to be the magnitude of the inner product (the integral over the product of the
first waveform times the complex conjugate of the second waveform) divided by the square root of the
product of the first waveform’s energy times the second waveform’s energy. The upper panel corre-
sponds to the spotlight mode, and the lower panel corresponds to the stripmap mode. All reflectors
have the dimension of 1 m.

Dihedral Dihedral Dihedral Trihedral
Specular 0 deg 45 deg 90 deg 0 deg Tophat
Specular 1.0 0.0021 0.0017 2.924%x10°4 0.1205 1.3271x 104
Dihedral 0.0021 1.0 0.6499x 106 0.1583 5.0318x10 4 0.1327
0 deg
Diggdéal 0.0017 6.6499x 106 1.0 6.2463x10° 6.3453x 104 3.1767x10 4
eg
Dihedral 2.9242x10° 4 0.1583 6.2463x10°° 1.0 0.0012 0.2468
90 deg
Trihedral 0.1205 5.0318x 10 6.3453x 104 0.0012 1.0 8.9602x 104
0 deg
Tophat 1.3271x10™4 0.1327 3.1767x1074 0.2468 8.9602x 104 1.0
Dihedral Dihedral Dihedral Trihedral
Specular 0 deg 45 deg 90 deg 0 deg Tophat
Specular 1.0 0.0021 0.0018 7.5001x10"4 0.2577 3.6844x10°4
Dihedral 0.0021 1.0 8.0428x 106 0.3711 0.0011 0.3668
0 deg
DiZEdéal 0.0018 8.0428x 106 1.0 7.7375x10°© 0.0015 2.6140x10 4
eg
Dihedral 7.5001x10 4 0.3711 7.7375x10°© 1.0 0.0034 0.9572
90 deg
Trihedral 0.2577 0.0011 0.0015 0.0034 1.0 0.0013
0 deg
Tophat 3.6844x10° 4 0.3668 2.6140x10"4 0.9572 0.0013 1.0

(clutter and noise on)y To carry out classification, we se- discrete memoryless chann@&MC), with transition prob-

lect their maximum value: ifl, is maximum among  abilities calculated from the model in Fig. 9.

I,...ly, then the classifier decides the target to be type Combining the transition probabilities of the DMC with
Evaluation of the performance of multicomponent target an N-ary decision rule based on the DMC then yields an

classification is computationally intensive, because the like- easily calculated error probability from which a PCC lower

lihood values of different multicomponent targets are bound immediately follows. This method of obtaining a

densely correlated in general. Within the scope of this lower bound on the PCC can also be applied to the conven-

work, we assume that each target component can be locatedional full-resolution imager.

anywhere, provided the orthogonality condition in E2)

holds. For the upper bound and the lower bound on the

probability of correct classificatioPCCO developed in this

section, the target components are assumed to be fixed a#.3 Upper Bound on the Probability

known positions, and the phase of the target signal from of Correct Classification

each component is randomly distributed in a uniform fash- optajning an upper bound on the PCC is equivalent to find-

ion, wh!ch represents the unava|lab|I!ty of accurate relative ing a lower bound on the error probability. If the reflector

phase information between the various components of @phases were exactly known and optimally employed, then

multireflector target. The radar-return model under this tar- the error probability would not be higher than the case in

get condition is specified by E¢28), and the time delays  \ypjich the phases of all components are random. Given ex-

corresponding to the target component locatioms(x) act phases, the classification problem simply becomes an
are presumed known. N-ary detection of the signals in an additive white Gaussian
. noise channel. In general, the error probability of detection

4.2 Lower Bound on the Probability of Correct of N signals over the additive white Gaussian noise channel
Classification is not available in a closed form. Thus, we again use a

A lower bound on the PCC can be calculated by finding the lower bound on this error probability.

PCC for any suboptimal classifier. For a suboptimal classi-

fier, we use a component-wise detection rule. Suppose that

the components are mutually orthogonal and that four re-

flector types(specular, dihedral, trihedral, and tophate N

considered. Then, we can carry out a binary detectan PCC=E Pr(say H;|H; trugPr(H;)

reflector of any type versus a nufor each reflector com- =1

ponent, and use these component decisions as inputs to a N

(suboptimum MAP N-ary decision rule. We can regard the — 2 {1—Pr(errofH; truePr(H,). (31)
decision for each target component as establishing a binary = ' '
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Cii DMC
N-ary A~
Targeti=Ci =| C2i|—— DMC — Say Ci
Decision
C3i|——= DMC
-Es
e
. % specular
Radar return — vm':::‘ "9 — S"spscular_>{" Io(2).)) 2 1 — or
null
Xs -Es
e
Whitenin l specular
Radar retum —= . % 1 S*specuar~| 1} To(2(.)) 21 n%rll

Fig. 9 The component-wise classifier for the multicomponent targets with 1. unknown phases and 2.
unknown phases and positions. The upper panel is the overall architecture; the middle panel is the
DMC for targets with unknown phases; and the lower panel is the DMC for the targets with unknown

phases and positions.

Pr(erroffH; true)

=PrerroflH; true, phase information given)

:Pr( U &;j|H; true, phase information givén (32
j#i

Here&; denotes the casgls' —sj||<||s'— s}, wheres' is
a matched-filter-output vector, matched to all distinct target

W(pjk,dij/2,d/2)
B 1
2m(1-pf) Y2

Lol

ZPJkXW'y

dxdy.
(1 p]k)

components, and properly normalized to make the noise This inequality deals with only two joint Gaussian random

part circulo-complex Gaussian with unit varianseis the
mean ofs’ when the targei is present. The prior probabil-
ity of targeti, Pr(H;), is assumed to be ] i.e., all targets
will be assumed equiprobable.

De Caen’s inequalifi can be used to get a lower bound
on the probability of a union:

N
Pl U A
j=1

Forj=1toN, A; is a subset of the sample space. Applying
this inequality to the probability of error, we obtain

Pr(A)?

S PIANAY (33

-3

Pr(errofH; true, phase information given)

_ Q%(djj/2)
7 Zkzi Yipjk.dij2dy/2)

(34)

where

(s—5,5— S

dii=[s—si, I H: R B
i=ls=sl p=rg =5 s =8

p

Q)= f " exp(—y?I2)dy
V27 Jx '

variables, and we have all the constants needed for its
evaluation, namely the distances between all signal points.
The error probability bound is thus easy to calculate. Like
the lower bound on the PCC, this upper bound can be ap-
plied to all processor models and both SAR operation
modes.

4.4 Numerical Results

Consider the target recognition problem for four targets,
each consisting of 9 or 10 reflectors with different loca-
tions, orientations, sizes, and types, as specified in Table 3.
We apply the upper and lower bounds on PCC that we
derived in the previous sections to this target constellation,
using the system parameters given in Table 1. Figure 10
plots the PCC bounds versus the inverse of the CNR for
both the conventional classifier and the optimal whitening-
filter processor when both have a perfect knowledge of tar-
get location. Also included in this figure are PCC results
obtained from Monte Carlo simulations of these two pro-
cessors. Figure 10 shows that the PCC lower bound for the
whitening-filter processor is close to its simulation result.
For the conventional processor, the simulation shows that
the PCC approaches a subunity, clutter-limited value in the
limit of zero noise, i.e., when 1/CNRO. It also shows that
the whitening-filter classifier has about 5-dB gain in terms
of the SNCR as compared with the conventional processor.
This advantage is due to the combined benefits accruing
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Table 3 Specification of target constellation. Note that (x, y) is the center location (in meters), 6, ¢ are
polar and azimuthal angles (deg), and p is half the side length of a reflector (in centimeters). S, D, Tr,
and To in columns denoted by t stand for specular, dihedral, trihedral, and tophat reflector, respec-
tively. The different sets of trihedral orientation angles denoted by a, b, c, d, e, and f mean: a: #=a
rotation around the (X,+ y,)/\/2 axis=1 deg, y=a rotation around the (— X,+ y,)/\2 axis=0.5 deg; b:
0=-0.5 deg, ¥=1.5 deg; c: 6=—1.5 deg, =0 deg; d: 6=1 deg, y=—1 deg; e: #=1.3 deg, y=—-2.1

deg; and f. =—0.3 deg, ¥=1.9 deg.

Target 1 Target 2 Target 3 Target 4
X,y 0, ¢ p t X,y 0, ¢ p t X,y 0, ¢ p t X,y 0, ¢ p t
25 -0.2 a 5 Tr —-27 —0.7 -8846 4 S 25 -0.2 a 5 Tr —-27 —0.7 -8846 4 S
0.6 —0.5 b 4 Tr 0.6 —0.5 b 4 Tr 03 1.4 -9043 10 D 0.6 —0.5 b 4 Tr
-2.0 —-15 -9045 9 S -02 -05 16 To —-0.2 —-05 16 To -0.2 —-05 16 To
-1.0 0.6 c 15 Tr -06 —10 -9343 6 D 20 10 -9045 16 S 2.0 1.0 -9045 16 S
-25 —-0.8 5 To -25 -08 5 To -1213 -8844 10 S -25 -08 5 To
1.2 —-1.6 d 8 Tr 1.2 -1.6 d 8 Tr -1510 —9045 13 D 1.2 -1.6 c 8 Tr
30 -15 -9045 16 S -0.7 -0.1 -8543 19 D -07 -01 -8543 19 D 3.0 —-15 -9045 16 S
0.6 —0.7 6 To 2.7 —-1.0 e 13 Tr 2.7 —-1.0 e 13 Tr 0.6 —0.7 6 To
15 -1.0 f 8 Tr 0.2 —15 -—-9049 9 D 15 -1.0 f 8 Tr 0.2 —15 -9049 9 D
-0.6 14 —-9044 15 S

from whitening-filter processingwhich optimally sup-
presses clutter full polarimetric processingwhich only
the optimal processor was presumed to haaed adaptive-

components In the noise-dominant condition under which
the clutter plus noise is close to white, the whitening filter
has little effect. The maximum polarimetric gain for a

resolution processingwhich the optimal system uses to single reflector is up to 3 dRusually identicaHH andVV
exploit physics-based signatures of the various reflector terms exist for single-bounced returns, while only H¥

PCC (Optimum vs. conventional)
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Fig. 10 Optimal processor and conventional processor PCC upper and lower bounds for the target
constellation specified in Table 3 when target locations are known. Also included are the results of

50000-trial computer simulations of these two processors.
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term exists for double-bounced retuynSo the adaptive-
resolution contribution is greater than 2 dB, comparable to

the polarimetric contribution.

5 Multicomponent Target Classification
with Uncertain Reflector Positions

In this section, we extend the target classification and PCCGLR=I,(r;m,,..

e[my, —My,/2my +My /2] and 7ie[73— T2,
+T1/2],...,7Mke[Tﬁ’,,k—TMk/z,TﬁAk+TMk/2]. The GLR is

defined as the likelihood ratio when the unknown param-
eters are replaced by their maximum likelihood estimates.
Plugging Eq.(36) into Eq. (35), we have that:

.,ka,’Tl,...,TMk)

evaluation schemes developed in the previous section to

multicomponent targets with uncertain positions.

5.1 Classification Scheme

First, we explore the classification of the targets with un-
certain reflector positions. Incorporating the position uncer-
tainty of the reflector components, the radar return for each

hypothesis is modeled in the same form as that in(E8§),
except the center locationsnfk, 7pk) of the target compo-

nents are no longer fixed and known. The random variables

Mg

=max]] exp(—Epk)Io[ZE fx dr
p=1 m —

. (37)

+
X spk(m— Mgk, T— Tpk) - (M, 7)

The GLR detector based on E@7) can be written in the
following form:

. M
myk, Tk are assumed to be mutually independent and each ‘
P TP . ) ) 7 o0 max]] {102
random variable is uniformly distributed withifim_ p=1

; ficdr

~Mpd2mo+Mpd2] for my, and [ro— T2, say Hy

+ Tp/2] for 7,k The position randomness models the vari- + ) >

ability or unavailability of the exact knowledge about some X Syk(M—Mpk, 7= 7pk) - (M, 7) < B (38)
aspects of a target reflector constellation in the real world. say Hg

Because the delay times are uniform random variables, it
is difficult to write down the likelihood ratio of two differ-  whereg is the threshold and the maximum is over the same
ent hypotheses. We can, however, formulate the GLR anddomain as that in Eq.37). Furthermore, because the zero-
develop a target classifier on that basis. For a specific real-order modified Bessel function is monotonically increasing
ization of the delay times, the likelihood ratio of hypotheses and My,....My, 71,007y, are mutually independent vari-

H, (targetk) with respect to the null hypotheskl, (clutter
plus noise onlyis:
|k(sv ml!' .. 1ka!Tlv'- . ’TMk)

Prin (T M2l HiG My Mgk, 717, )

B pr‘HO(rl,rz,...,erlHO;ml,...,mpk,Tl,...,TMk)

2‘2 f dr
m —

Mg
=11 exp—Epl,
p=1

, (39

+
X spk(m— Mk, 7— Tpk) - (M, 7)

whereEx is the energy of the@'th component of thek'th
target. For a given radar returim, 7), the likelihood ratio
is a function of My, My 1T, The maximum

ables, maximizing the overall product &f in Eq. (38) is
equivalent to maximizing eadh in the product. Hence the
GLR detector becomes

My
IT max 1,
p=1

ZEJ dr
m — oo
say Hy
+ >
Xspk(m—mpk,r—rpk)-r(m,r) < B. (39
say Ho

The form of the GLR detector is similar to the LR de-
tector discussed in the previous section, except that in the
GLR detector the value used to compare with the threshold
is maximized over the region of the delay time uncertainty.
This operation can be achieved by inserting a duration-
limited peak detector after the video detection of the output

likelihood estimate of these parameters from the radar re-from each individual matched filter. A target classifier can

turn is:

[y 7.7 ]

medr

m —oo

My
—argmax| | exp(—Ey! 0[ 2
p=1

X sh(m=mye 7= 750 - 1(m,7)| |, (36)

whererﬁl,...,rﬁMk,}l,...erk are the maximum likelihood
estimates  over mye[m{—My/2mi+My/2],....my,

be built, as discussed in the previous section, by employing
a bank of target detectors, incorporating energy corrections,
and choosing the largest output level.

To calculate the PCC for thBl-ary target recognition
problem, we need to obtain the statistical structure of the
GLR. As implied by Eq(39), to obtain the statistics of the
GLR we must solve the following general level-crossing
problem: for a complex 2-D random process with a given
covariance function and a fixed real-valued threshold level,
what is the probability that the magnitude of this random
process is smaller than the threshold level within a given
area? When the target is absent or all the components are
mismatched to the detector’s filters, then this random pro-
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cess is approximately stationary. When at least one of theover the whole uncertainty region. We can, again, apply the
target components is matched to the detector’s filters, this2-D level-crossing theory to obtain the CDF xf.
process is nonstationary. As a result it is best to consider the

level-crossing problems fdd, andH, (k#0) separately. Q2=Pr(xs>%lgl[exp( E)]Ino reflector is presejt

=1 — b
5.2 Lower Bound on the PCC 1-F(7), 42
Paralleling the work in the last section, a component-wise . ] N
detector can be exploited to obtain a lower bound on the Where y=1, [expEyJ/2. We can find all other transition
PCC for the random-position case. Any suboptimal classi- probabilities in a similar way. Having all the transition
fier will be inferior in its classification performance to the probabilities, we can make axary decision based on the
optimum one. Thus, the PCC for a suboptimal target rec- MAP rule and obtain our component-wise lower bound on
ognizer is a valid PCC lower bound for an optimum clas- the PCC for the case of position uncertainty.
sifier.

A component-wise detector can be used in the optimum
target detector for a single-reflector target. We discriminate 5.3 Upper Bound on the PCC

the reflector type for each component separately, and thenTo get an upper bound on the PCC, we assume that we
collect the results from each component-wise detector to have exact phase information for each reflector. Because
make a MAPN-ary decision. This is a valid classification  this means we have more information for the classification
scheme, but not necessarily the optimum one. To obtain thetask, the PCC for the optimum receiver in this case will be
PCC for this suboptimal classifier, we only need to know 3 valid upper bound on the PCC in the case of target with
the transition prObabi”tieS for the Component'Wise detector. random phaseS, which we are interested in. If we assume all
Assume the true target component is specular. We have thatarget components are orthogonal, we can set the phases to
the transition probabilityQ,=Pr(say speculgspecular is  pe zero for all target component signals without loss of

true), satisfies generality. Thus the formula for the radar return signal is
similar to Eq.(28), except that all expé,) terms are left
Q,=Pr(l>1,=1|specular is trup out. Using this return signal model, the likelihood ratio for

— P 1 (2x0)expl — E¢)>1|specular is trup the targetk with respect to target @the null hypothesisis:

=Prxs> 11, [expEg)]|specular is truge (Mg )

=1—Pr(xs< y|specular is trug (40) My

= H exp{ —Epk+2R
p=1

% ficdr

where y=|51[exp(ES)]/2, and xs is the output from the

maximum finder of the detector for the target with an un-

known location(see Fig. 9. xs:’k(m— Mk, T— Tpk) - r(m,r)} ) (43
To evaluate the last term, we need to know the probabil-

ity structure ofxg. The radar return is passed through a

filter that is matched to that of the specular return signal. whereE « is the energy of the'th component of thek'th
The maximization process will pick up the peak value of target, andi denotes the real part. The appearance of the
the magnitude of the postmatched-filter signal within the 7M(g) (g denotes the argument of the operatoy is due to
uncertainty region. If we partition the uncertainty region . "t & ot the probability density functige(r|H,) has

into resolution bins and assume that each bin is statisticallythe exponenE g+ (Eg)* andE. is real. The equation
p p p :

independent of the others, we can formulate the cumulative.” ~ =™ .
distribution function(CDF) of x, as follows: is similar to Eq.(35) but does not involve a Bessel func-

tion. The generalized log likelihood rati@&LLR) for the
targetk is thus:

Pr(xs< y|specular is trug= P?‘H( Y)Po(v), (42)

My -
whereN, is the number of binsPs(y) is the probabilty — GLLR,— > (_Epk+2 maxm[E f dr
that the magnitude of the stationary whitened clutter-plus- p=1 m J-w
noise is always less thapfor a given bin area, anB,(y)
is the CDF of the output value from a perfectly matched XsTk(m—mpk,q-— Tpk)-r(m,T)])
signal sampled at the correct positidh,.(y) can be calcu- b

lated by applying 2-D level-crossing theory, aRg(y) can My
be obtained analytically. Since we know the statisticgQf = E (—Epk+2y). (44)
we can now evaluate the transition probabil@y . p=1

To calculate a transition  probability, Q,
= Pr(say speculano reflector is present), we need to know Here, the statistics of,x can be calculated via level-
the statistics ok, that is the radar return from clutter only,  crossing theory. The probability of correct classification can
matched to the specular signal. Thug,will be stationary then be evaluated via
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PCC (Optimum vs. conventional / uncertain location)
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Fig. 11 Optimal processor and conventional processor PCC upper and lower bounds for the target
constellation specified in Table 3 when the target reflector locations are not known. Also included are
the results of 50000-trial computer simulations of these two processors.

PCQH;=1—Pr(errofH; is true) spect to those for the conventional classifier. It presents
_ ) ) ) similar features to those seen earlier for the known reflector
<1-—Pr(errofH; is true, phase information given)  position example. Thus, although the PCC lower bound for

the whitening processor is somewhat looser when com-
zl_p,< U {GLLRi<GLLRj} pared with the simulation result, the optimal classifier still
Vj#i has about 5-dB SNCR gain relative to the conventional

classifier. Note that there is a considerable gap, for the con-

ventional processor, between the PCC lower bound and the

simulation result, and neither of these curves approaches

unity as 1/CNR-0, for the clutter appearing in the conven-

tional processor is not as small as that in the optimum pro-

cessor when the noise is diminishing. Figure 12 compares
<GLLR||H; is true, phase info given). (45 the whitening processor’s PCC simulations for the cases of

known and unknown reflector locations. In this example,

In the previous section we used de Caen’s inequality in Eq. the uncertainty of reflector locations results in a 3- to 5-dB

(33) to obtain a tighter lower bound on the probability of a SNCR penalty.

union, which involves the joint probability distribution of

two Gaussian random variables. However, for this target

setting, we cannot apply de Caen’s inequality, because theg Conclusion

statistics of GLLR are complicated. The formula in Eq.

(45) can be calculated without difficulty, since we have the

statistics for the GLLRs.

|H; is true, phase info give}n

<1-maxPrGLLR,;
j#i

We develop a physics-based target recognition theory for
SAR images. The basic idea is to construct radar-return
signatures from electromagnetic scattering theory, and to
. apply conventional SAR processors and likelihood-ratio
5.4 Numerical Results optimum processors to perform detection or classification
We obtained the lower and upper bounds on the PCC for based on these radar signatures. The contribution of this
the target setting specified in Table 3. Uncertain areas for study is not one of new efficient or powerful processing
the target reflectors were all set to squares with side lengthschemes for real radar data or complicated target signatures
of 10 cm. Figure 11 compares the lower and upper boundsgenerated from CAD models. Instead, it theoretically quan-
on the PCC for the optimum whitening classifier with re- tifies the target-recognition performance improvement of
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PCC simulations (Known vs. uncertain location)
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Fig. 12 Comparison of optimal processor PCC simulations for the cases of known and unknown

reflector locations.

adaptive-resolution, polarimetric, or whitening-filter pro-
cessing, and provides physical interpretations for such ad-
vantages.

The performance analysis for likelihood-based proces-
sors for multicomponent target detectors shows that the
fully polarimetric Neyman-Pearson processor has better de-

tection performance than the scalar Neyman-Pearson 3.

(adaptive-resolutionprocessor, which has performance su-
perior to that of the conventional SAR processor. We dis-
covered that the effect of adaptive resolution can be impor-
tant when the reflector size is much largéor both
stripmap and spotlight mogleor smaller (for spotlight
mode than the diameter of antenna aperture. The perfor-
mance analysis for multicomponent target classifiers also

indicates that the Neyman-Pearson processor outperforms

the conventional SAR processor for a richer reflector rep-
ertoire and a more complex target scenario: a significant
SNCR gain of about 5 dB. According to our estimation, the
optimum likelihood-ratio processor’s adaptive-resolution
and polarimetric effects are comparable when the
whitening-filter effect is negligible. We also found that the

binary discrete-memoryless-channel processor has quite

close classification performances to those of the optimum
processor, especially when the target locations are known.

Acknowledgments

This research was supported by U.S. Air Force Office of
Scientific Research Grant F49620-96-1-0028.

2148 Optical Engineering, Vol. 42 No. 7, July 2003

References

1. L. M. Novak, S. D. Halversen, G. J. Owirka, and M. Hiett, “Effects of
polarization and resolution on the performance of a SAR automatic
target recognition system/’incoln Lab. J.8(1), 49—-68(1995.

H. R. Park, J. Li, and H. Wang, “Polarization-space-time domain

generalized likelihood ratio detection of radar targetSignal Pro-

cess.4l, 153-164(1995.

M. W. Tu, I. J. Gupta, and E. K. Walton, “Application of maximum

likelihood estimation to radar imaging,IEEE Trans. Antennas

Propag.45(1), 20—27(1997.

4. T. Soni, J. R. Zeidler, and W. H. Ku, “Performance evaluation of 2-D
adaptive prediction filters for detection of small objects in image
data,” IEEE Trans. Image Proces2(3), 327-340(1993.

5. W. Irving, R. B. Washburn, and W. E. L. Grimson, “Bounding per-

formance of peak-based target detectoRrdc. SPIE307Q 245-257

(1997).

J. S. Lee and K. Hoppel, “Principal components transformation of

multifrequency polarimetric SAR imagery|EEE Trans. Geosci. Re-

mote Sens30(4), 686—696(1992.

L. M. Novak, M. C. Burt, R. D. Chaney, and G. J. Owirka, “Optimal

processing of polarimetric synthetic-aperture radar imagerptoln

Lab. J.3(2), 273-290(1990.

J. A. O'Sullivan and M. D. DeVore, “Performance-complexity

tradeoffs for several approaches to ATR from SAR imagdé&dc.

SPIE4053 587-597(2000.

J. A. O’Sullivan, M. D. DeVore, V. Kedia, and M. I. Miller, “SAR

ATR performance using a conditionally Gaussian moddEEE

Trans. Aerosp. Electron. Sy&7(1), 91-106(2001).

10. X. Yu, L. E. Hoff, I. S. Reed, A. M. Chen, and L. B. Stotts, “Auto-

matic target detection and recognition in multiband imagery: a unified

ML detection and estimation approachEEE Trans. Image Process.

6(1), 143—-156(1997.

S. Krishnamachari and R. Chellapa, “Multiresolution Gauss-Markov

random field models for texture segmentatiofEEE Trans. Image

Process6(2), 251-267(1997.

A. H. S. Solberg, T. Taxt, and A. K. Jain, “A Markov random field

model for classification of multisource satellite imagefEE Trans.

Geosci. Remote Ser34(1), 100-113(1996.

13. W. W. Irving, L. M. Novak, and A. S. Willsky, “A multiresolution

2.

6.

7.

8.

9.

11.

12.



14.

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.

25.
26.

27.

28.
29.

30.
31.
32.

Yeang, Cho, and Shapiro: Target-recognition theory . . .

approach to discriminating targets from clutter in SAR imagery,”
Proc. SPIE2487, 272—-299(1995.

R. D. Chaney, A. S. Willsky, and L. M. Novak, “Coherent aspect-
dependent SAR image formation,Proc. SPIE 2230 256-274
(1994.

N. S. Subotic, B. J. Thelen, J. D. Gorman, and M. F. Reiley, “Multi-
resolution detection of current radar targetsEE Trans. Image Pro-
cess.16(1), 21-35(1997).

D. C. Munson, J. D. O'Brien, and W. K. Jenkins, “A tomographic
formulation of spotlight-mode synthetic aperture raddroc. IEEE
71(8), 917-925(1983.

D. C. Munson and R. L. Visentin, “A signal-processing view of strip-
mapping synthetic aperture radalZEE Trans. Acoust., Speech, Sig-
nal Process37(12), 2131-21471989.

N. Nandhakumar and J. K. Aggarwal, “Physics-based integration of
multiple sensing modalities for scene interpretatio®foc. |IEEE
85(1), 147-163(1997).

R. L. Moses, E. Erten, and L. C. Potter, “Performance analysis of
(anis%;ropic scattering center detectiofiRfoc. SPIE307Q 235-244
1997.

L. C. Potter and R. L. Moses, “Attributed scattering centers for SAR
ATR,” IEEE Trans. Image Proces6(1), 79-91(1997.

D. Park, “High-resolution laser radar performance analysis,” PhD

Thesis, Department of Electrical Engineering and Computer Science,

MIT (1988.
D. Park and J. H. Shapiro, “Performance analysis of optical synthetic
aperture radars,Proc. SPIE999 100-116(1988.

G. Leung and J. H. Shapiro, “Toward a fundamental understanding of

multiresolution SAR signaturesProc. SPIE307Q 100-109(1997).

G. Leung, “Synthetic aperture radar discrimination of diffuse and
specular target returns,” MEng Thesis, Department of Electrical En-
gineering and Computer Science, M(T997).

J. A. Kong Electromagnetic Wave Theqrdohn Wiley and Sons, New
York (1990.

C.-P. Yeang, “Target identification theory for synthetic aperture radar

images using physics-based signatures,” ScD Thesis, Department of

Electrical Engineering and Computer Science, M1B99.

M. A. Richards and K. D. Trott, “A physical optics approximation to
the range profile signature of a dihedral corner reflect®EE Trans.
Electromagn. CompaB7(3), 478—-481(1995.

L. Tsang, J. A. Kong, and R. T. Shifitheory of Microwave Remote
SensingJohn Wiley and Sons, New Yoid985.

W. G. Carrara, R. S. Goodman, and R. M. MajewSiotlight Syn-
thetic Aperture Radar: Signal Processing Algorithmstech House,
Boston(1995.

C. W. Helstrom,Statistical Theory of Signal DetectipfPergamon
Press, Elmsford, NY1968.

J. H. Shapiro, R. W. Reinhold, and D. Park, “Performance analyses

for peak-detecting laser radars?foc. SPIE663 38—56(1996.

G. E. Squin, “A lower bound on the error probability for signals in
white Gaussian noise,/lEEE Trans. Inf. Theoryl4(7), 3168-3175
(1998.

Chen-Pang Yeang received the BS de-
gree in electrical engineering from the Na-
tional Taiwan University in 1992, and the
SM and ScD degrees in electrical engi-
neering from the Massachusetts Institute of
g Technology in 1996 and 1999, respectively.

R As a graduate student, he was a research

-

assistant at the MIT Research Laboratory
of Electronics. His doctoral research was
electromagnetics-based target recognition
theory for synthetic aperture radar imagery.

Since 1999, he has been in the doctoral program of the History and

Social Studies of Science and Technology at MIT. His PhD disser-
tation topic is the history of radio science and engineering in the
early twentieth century. He is currently a graduate fellow of the Dib-
ner Institute for History of Science and Technology. In the summers
of 2000 and 2001, he was a postdoctoral fellow at the MIT Labora-
tory of Information and Decision Systems. In 2002, he was a visiting
scholar at the History Faculty of the California Institute of Technol-
ogy. He is a member of IEEE and Sigma Xi.

Choongyeun Cho received the BS degree
in electronics engineering in 1998 from Ko-
rea University, Seoul, and the SM degree
in electrical engineering in 2001 from Mas-
sachusetts Institute of Technology (MIT),
where he is currently pursuing the PhD de-
gree in the Remote Sensing and Estima-
tion Group.

Jeffrey Shapiro received the SB, SM, EE,
and PhD degrees in electrical engineering
from the Massachusetts Institute of Tech-
nology in 1967, 1968, 1969, and 1970, re-
spectively. As a graduate student he was a
National Science Foundation Fellow, a
Teaching Assistant, and a Fannie and John
Hertz Foundation Fellow. His doctoral re-
search was a theoretical study of adaptive
techniques for improved optical communi-

; cation through atmospheric turbulence.
From 1970 to 1973, he was an assistant professor of electrical sci-
ences and applied physics at Case Western Reserve University.
From 1973 to 1985, he was an associate professor of electrical
engineering at MIT, and in 1985, he was promoted to Professor of
Electrical Engineering. From 1989 until 1999 he served as Associate
Department Head. In 1999 he became the Julius A. Stratton Profes-
sor of Electrical Engineering. In 2001, he was appointed Director of
MIT's Research Laboratory of Electronics. His research interests
have centered on the application of communication theory to optical
systems. He is best known for his work on the generation, detection,
and application of squeezed-state light beams, but he has also pub-
lished extensively in the areas of atmospheric optical communica-
tion and coherent laser radar. He is a fellow of IEEE, the Optical
Society of America, and the Institute of Physics, and he is a member
of the American Physical Society and SPIE. He has been an Asso-
ciate Editor of the IEEE Transactions on Information Theory and the
Journal of the Optical Society of America. He was the principal or-
ganizer of the Sixth International Conference on Quantum Commu-
nication, Measurement and Computing.

Optical Engineering, Vol. 42 No. 7, July 2003 2149



