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from physics-based synthetic aperture radar (SAR) signatures. The
target-return and clutter-return models are developed from electromag-
netic theory. Both stripmap-mode and spotlight-mode SARs are treated.
Adaptive-resolution processors, conventional SAR processors, and opti-
mum likelihood-ratio target detectors are presented for multicomponent
target detection, and their receiver operating characteristics are com-
pared. Similarly, conventional and optimum likelihood-ratio processors
are used for multicomponent target classification. We develop upper and
lower bounds and present Monte Carlo simulations for the probabilities
of correct classification. © 2003 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1579031]

Subject terms: target detection; target classification; Neyman-Pearson processor;
electromagnetic scattering.

Paper 020427 received Sep. 27, 2002; revised manuscript received Dec. 17,
2002; accepted for publication Dec. 20, 2002.
from
ted
c-
the

its
nt

ck-
rge
and
rize
od-
anc
ifie
de
on

ing
ete
lus
the
uss
e a
n-

me

sta
nd
g-
the
ted
d b

that
in
d-
ian
m-

rix
for
d 9,
pe

two
pre-
type
e

ul-
ob-
ns.
by
rep-

In
are
val-
las-

re-
n

sor
ion
a-
ef.

loit
ef-

hed
1 Introduction

In recent years, synthetic aperture radars~SARs! have been
used to detect manmade targets and distinguish them
naturally occurring backgrounds. A SAR-based automa
target recognition~ATR! system requires a fast and effe
tive discriminator to suppress natural clutter, detect
presence of a target, and classify the type of target from
radar return.1 Such a system relies on models for differe
components of radar returns, namely, the returns from~dif-
ferent types of! manmade targets, natural clutter, and ba
ground noise. One typical approach is to model the ta
return as a parametrized deterministic signal pattern,
the clutter and noise as stochastic processes characte
by their statistics. In Ref. 2, the clutter and noise are m
eled as Gaussian random processes with given covari
matrices, and the target return is modeled as a prespec
spatiotemporal pattern multiplied by complex-amplitu
parameters. In Ref. 3, the target return is composed of c
tributions from several scattering centers. Each scatter
center component contains an amplitude and a phase d
mined by the radar’s carrier frequency and look angle, p
the scattering position centers. The unwanted part of
radar return, i.e., the noise, is assumed to be a white Ga
ian process. In Ref. 4, the target signal is taken to b
Gaussian intensity function, the clutter a sinusoid with ra
dom phase, and the noise a Gaussian process.

Another approach to radar-signal modeling is to assu
that the target return and the unwanted part~clutter plus
noise! are random processes characterized by different
tistics. In Ref. 5, the target return has deterministic a
random parts, with the latter arising from scatterin
amplitude and scattering-center uncertainties. In Ref. 6,
radar signal is a target return multiplied by an uncorrela
speckle noise, whose covariance matrices are estimate
Opt. Eng. 42(7) 2129–2149 (July 2003) 0091-3286/2003/$15.00
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principal-component analysis. This approach presumes
different clutter types have different statistics. The work
Ref. 7 models the full polarimetric radar clutter as the pro
uct of a gamma-distributed textural variable and a Gauss
random vector, whose covariance matrix is determined e
pirically. The numerical values for the covariance-mat
elements calculated from real SAR data are different
trees, shadows, grass, and mixed scrub. In Refs. 8 an
each pixel of a SAR image corresponding to a specific ty
of target at a given pose is modeled as the sum of
mutually independent Gaussian random vectors that re
sent target return and white noise. The target pose and
are estimated by maximizing the likelihood ratio of th
joint conditional Gaussian probability density.

The preceding approaches can also be applied to m
tiple radar images, i.e., to images of the same scene
tained from different sensors and/or at different resolutio
The signal model in Ref. 10 generalizes that of Ref. 2
making each image point a vector, whose components
resent sensor data collected at different bandwidths.
Refs. 11 and 12, radar images at different resolutions
modeled as Markov random fields, and the parameter
ues in their statistical models are used as the basis for c
sification or texture segmentation.

Recent studies of multiresolution radar images have
vealed promising potential for solving target identificatio
problems. The work in Ref. 13 shows that a proces
based on an autoregressive model of multiresolut
millimeter-wave SAR imagery provides useful discrimin
tion between natural clutter and manmade targets. In R
14, ultra-wide-band~UWB! foliage-penetrating SAR data
demonstrated that adaptive-resolution imaging can exp
the aspect-dependent reflectivity of manmade objects. R
erence 15 shows that discrimination can be accomplis
2129© 2003 Society of Photo-Optical Instrumentation Engineers
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
via adaptive multiresolution processing based on the dif
ent variation-versus-resolution patterns of targets and c
ter.

The aforementioned treatments are founded more
provisional signal models than on rigorous, physics-ba
theory. In particular, they do not take into account the
fects of transmitter pulse shape, antenna beam patterns
free-space wave propagation that relate the radar re
from targets and clutter to their respective physical char
teristics via an electromagnetic scattering model. In R
16 and 17, the return signals corresponding to spotlig
mode and stripmap-mode SARs are constructed via a c
prehensive consideration of radar-pulse transmission
propagation. The resultant return signal is formulated a
spatial integral of a Lambertian reflectivity pattern with
the region of interest and the Green’s function correspo
ing to the mode of radar operation. This approach, howe
is not directly derived from a rigorous electromagnetic sc
tering theory, and therefore does not capture certain im
tant features, such as aspect-angle dependence, in the r
from a specular object. The work in Ref. 18 claims to bu
a physics-based model for the UWB radar return o
specular target, from an observed fact that a UWB pu
incident on a flat reflector produces two return pulses,
cause of the discontinuities at the reflector’s edges. T
phenomenon, although predictable from scattering the
can fail to capture other significant features in the ra
return. In Refs. 19 and 20, a target-return model for UW
SAR is constructed from physical optics and the physi
theory of diffraction. The pulse shape is taken from t
UWB specification, and the antenna beam pattern, altho
not included, could be incorporated by multiplying the r
turn by a location-dependent weighting function. In Re
19 and 20, however, the region of interest is only the pa
bolic trajectory corresponding to the footprint of a fixe
target at the SAR image plane, rather than the whole
image plane. In this sense, the processor is only 1-D,
2-D. Moreover, the unwanted part of the radar signal d
not include the clutter scattered from the environment
only consists of the white Gaussian noise.

Exploiting the multiresolution characteristics in SA
imagery using a physics-based approach seems promi
The mathematical formulation of the radar-return sig
and chirp-compression processor in Refs. 21 and 22,
gether with a physical-optics model for the target scatte
were used in Refs. 23 and 24 to provide a first-princip
analysis for discerning specular returns from diffuse retu
in synthetic aperture radar imagery by means of their d
tinct multiresolution patterns. Because the scattering p
tern of a specular reflector is directional rather than iso
pic, its resulting optimum processing duration is shor
than that of a conventional chirp-compression proces
This analysis verifies the empirical results from real SA
data that were reported in Ref. 14. However, the scen
considered in Refs. 23 and 24 is restricted to a simple c
1-D, continuous-wave, nonpolarimetric, stripmap-mode i
aging of a single reflector embedded in clutter. In additi
the target recognition in these cases is restricted to bin
detection. To establish a comprehensive first-princip
analysis for target detection and classification in SAR i
agery, a significant amount of work remains to be done
2130 Optical Engineering, Vol. 42 No. 7, July 2003
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Motivated by the work of Refs. 23 and 24, we underta
a complete physics-based analysis of target detection
classification using SAR imagery. The operational con
tions are extended to a more realistic case: 2-D, chirp-pu
waveform, and full polarimetric data collection. The rad
scenarios of interest include stripmap-mode and spotlig
mode SARs. The targets consist of a repertoire of geome
cally simple reflectors, including a specular mirror, a dih
dral reflector, a trihedral reflector, and a tophat-shap
reflector. The point of choosing these reflector types is
deal with several fundamental wave-scattering mec
nisms: single reflection~specular!, directional double re-
flection ~dihedral!, triple reflection~trihedral!, and nondi-
rectional double reflection~tophat!. The clutter is assumed
to originate from a rough reflecting surface. Both the tar
and clutter returns are modeled from electromagnetic s
tering theory.

The purpose of adopting electromagnetic theory is no
produce an accurate and comprehensive simulation of S
images, but rather to provide a fundamental signal-mo
understanding for optimizing certain SAR signa
processing schemes. Our goal is neither to develop a
cific target-recognition algorithm, nor to evaluate empi
cally such an algorithm by processing the real SAR d
and comparing the results with those from other algorithm
Instead, we intend to study the performance of a gen
target-recognition approach from a theoretical, mod
based perspective. Specifically, we aim to answer the
lowing questions. Under our assumed signal, clutter, a
noise models, how much gain does the optimum likelihoo
ratio target recognizer have over the likelihood-ratio reco
nizer based on a conventional SAR image processor? H
much of this gain is due to the adaptive-resolution arran
ment, polarimetric arrangement, or whitening of the clut
spectrum in the optimum processor? And is it plausible
approximate the complicated optimum recognizer with
simpler scheme under some circumstances? Although
have not translated our generic scheme of an optim
likelihood-ratio recognizer into an actual SAR ATR alg
rithm sophisticated enough to handle data in the real wo
~and henceforth do not compare the results of our per
mance analysis with the performances of other SAR ATR!,
the answers to the previous questions shed light on im
menting this algorithm as well as on understanding the
fects of different features in this algorithm.

The remainder of this work is organized as follows. Se
tion 2 describes the signal and processor models for
stripmap-mode and spotlight-mode SARs. The signal
concern includes three components: target return, clu
and noise. The types of processors are conventio
adaptive-resolution, and Neyman-Pearson optimum. S
tion 3 presents performance results for multicomponent
get detection. We compare the numerical values of th
results, namely receiver operating characteristics, for dif
ent processors and target scenarios. Targets constitu
only a few number~three! of reflectors are chosen to stud
the effects of simple reflectors’ features on the likelihoo
ratio-based processors. Sections 4 and 5 develop optim
likelihood-ratio classifiers for multicomponent targets wi
known and unknown positions, and present the numer
results of their performances, namely the probabilities
correct classification, in comparison with those from t
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
classifiers based on the conventional SAR processor
more complex target scenario that has closer resembl
to a realistic condition is considered: four distinct targ
comprising nine to ten reflector components. The proba
ity of correct classification for this complex target scena
is difficult to compute. Instead, we develop upper a
lower bounds and present Monte Carlo simulation res
for this probability. Section 6 is a brief conclusion.

2 2-D SAR Signal and Processor Models

The stripmap and spotlight SAR modes we consider
sketched in Fig. 1. The radar is mounted on an airc
flying with velocity v̄5 x̂v at an altitude ofL m, hence its
position at timet is given by the vectorr̄ t5 x̂vt1 ẑL. The
direction 2 ẑ852 ẑ sin(c)1ŷcos(c) in Fig. 1 is on the
plane perpendicular to the velocity vectorv̂ and tilted
downward from the horizontal directionŷ with angle c,
making L85L/sin(c) the range to the ground. The rad
transmits a sequence of pulses toward the region of inte
on the ground. The time-domain structure of this 2-D co

Fig. 1 Flight geometry for a 2-D SAR: upper panel is the stripmap
mode, and the lower panel is the spotlight mode.
e

t

figuration consists of a dimensionless discrete coordinatm
along the cross-range direction, which is the pulse-num
index, and a continuous-time coordinatet along the range
direction, corresponding to the time delay of the rad
return.24 The only difference between stripmap- an
spotlight-mode operations is the normal direction of a
tenna aperture. In stripmap-mode operation, this norma
fixed at2 ẑ8, so that as the aircraft flies, the antenna-be
footprint sweeps out an elongated strip on the ground
distanceL/tan(c) from the projection of aircraft trajectory
and with widthlcL/d sin(c), whered is the radar’s antenna
diameter andlc is its wavelength. In spotlight-mode opera
tion, however, the antenna’s normal direction is adjus
along the flight path to constantly point toward the regi
centered at (x,y,z)5@0,L cot(c),0#, so that it ‘‘spotlights’’
a fixed footprint region of widthlcL/d sin(c).

In both the stripmap- and spotlight-mode scenarios,
radar emits a train of modulated pulses which then pro
gate to the target region, where they are scattered~re-
flected! by the object and then propagate back to the rece
ing antenna. The waveform collected by the receiver
therefore a superposition of target return, clutter, and
ceiver noise. Because we are mainly interested in discri
nating manmade objects from natural backgrounds, we c
sider the target return to have come from a geometric
simple reflector or reflectors, and the clutter from a rand
rough reflecting surface. Both are treated via electrom
netic theory.

2.1 Radar Return Models

We assume that the transmitter radiates a repetitive trai
pulses with periodTs , complex envelopep(t), and carrier
angular frequencyVc s21 from an apertureSa . The result-
ing electric field on the surface of this aperture is

Ēa~ r̄ a ,t !5ReF ûa~hPT!1/2Uant~ r̄ a! (
m52`

`

p~ t2mTs!

3exp~2 iVct !G , ~1!

where r̄ a is the spatial coordinate vector withinSa in the
radar’s rest frame,ûa represents the polarization of th
transmitted fieldĒa , PT is the peak transmitter power,h
5(m0 /e0)1/2 is the natural impedance of free space, a
Uant( r̄ a) is the stationary spatial antenna aperture patter
the radar’s rest frame. We use an elliptical-Gaussian spa
pattern to model the finite aperture dimensions of the tra
mitter antenna,24

Uant~ r̄ a!5S 2

paxay
D 1/2

exp@2~xa /ax!
22~ya /ay!2#, ~2!

wherexa is the coordinate in the along-track~cross-range!
direction, ya is the coordinate in the across-track~range!
direction, andax anday are the radii ofSa associated with
the along- and across-track directions, respectively. T
complex envelopep(t) is assumed to be a chirped Gaus
ian pulse with durationT0 and chirp bandwidthW0 :
2131Optical Engineering, Vol. 42 No. 7, July 2003
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
p~ t !5exp@2 ipW0t2/T024~ t/T0!2#. ~3!

The return of the incident radar wave from a target c
be modeled via scattering theory. For an incident mo
chromatic plane wave with propagation directionk̂i , angu-
lar frequency V, and wave numberk5V/c, namely,
Ēi( r̄ ,t)5Re$Ēi0 exp@i(kk̂i•r̄2Vt)#%, the scattered wave in
the far-field zonekr@1 is25

Ēs~ r̄ ,t !5ReFexp~ ikr !

r
S% ~ r̂ ,k̂i ,V!•Ēi0 exp~2 iVt !G . ~4!

Here r̄ is in the local coordinate whose origin is at th
object center, andS% ( r̂ ,k̂i ;V) is the object’s bistatic scatter
ing tensor as a function of the incident directionk̂i , scat-
tering directionr̂ 5 r̄ /u r̄ u, and ~angular! frequencyV. The
transmitted radar pulse is a superposition of monoch
matic plane waves. Therefore the field scattered from
target can be obtained by summing all the scattering fie
corresponding to the individual monochromatic plane-wa
components. The result is a superposition of spher
waves modulated by the scattering tensors.

The radar return is collected by the receiving anten
and is taken to have a phasor complex envelopey(t), con-
sisting of a train of return pulses separated byTs s. Because
the returns associated with two adjacent pulses are o
narily nonoverlapping, we can extract fromy(t) a 2-D sig-
nal r (m,t), in which the discrete indexm represents the
pulse number, and the continuous timet spans the interva
(2Ts/2,Ts/2#:

y~ t !' (
m52`

`

r ~m,t2mTs22L8/c!. ~5!

The polarimetric signature that is embedded in the sca
ing function can be exploited by choosing different incide
(ûa) and receiving (ûc) polarizations. In what follows, we
define the aircraft flight directionx̂ to be vertical polariza-
tion, and the directionŷ8, which is orthogonal tox̂ and the
antenna’s nominal directionẑ8, to be horizontal polariza-
tion. In all cases we consider theHH, VV, andHV com-
ponents of the radar return;VH, being identical toHV
because of reciprocity, will not be explicitly treated. We u
the boldface symbol to denote the fully polarimetric retu
signal, namely,

r ~m,t!5F r HH~m,t!

r VV~m,t!

r HV~m,t!
G . ~6!

By means of the Fraunhofer approximation, we can
rive the 2-D complex polarimetric target return from Eq
~1! through~6!. It can be shown that for a simple scatter
located at (x,y,z)5@Dx ,Dy1L8 cot(c),0# away from the
scene center (x,y,z)5@0,L8 cos(c),0#, the 2-D complex
polarimetric target return associated with stripmap-mo
operation is26:
2132 Optical Engineering, Vol. 42 No. 7, July 2003
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r target~m,t!

'2E
2`

` dV

2p
P~V!exp$2 iV@t22Dy cos~c!/c#%

3m0
2~Vc1V!2

APTaxay

4phL82
exp~ i2kc$L81Dy cos~c!

1@Dy sin~c!#2/2L8%!exp@ ikc~mvTs2Dx!
2/L8#

3exp$2@~kc1k!ax~mvTs2Dx!#
2/2L82%

3exp$2@~kc1k!ayDy sin~c!#2/2L82%

3Uc•S% 8S ẑ8L81 x̂mvTs /L82 x̂Dx2 ŷDy

uẑ8L81 x̂mvTs /L82 x̂Dx2 ŷDyu
,

2 ẑ8L82 x̂mvTs /L82 x̂Dx2 ŷDy

uẑ8L81 x̂mvTs /L82 x̂Dx2 ŷDyu
,Vc1V D •Ua , ~7!

and the 2-D complex polarimetric target return associa
with spotlight-mode operation is26:

r target~m,t!

'2E
2`

` dV

2p
P~V!exp$2 iV@t22Dy cos~c!/c#%

3m0
2~Vc1V!2

APTaxay

4phL82
exp~ i2kc$L81Dy cos~c!

1@Dy sin~c!#2/2L8%!exp@ ikc~mvTs2Dx!
2/L8#

3exp$2@~kc1k!axDx#
2/2L82%

3exp$2@~kc1k!ayDy sin~c!#2/2L82%

3Uc•S% 8S ẑ8L81 x̂mvTs /L82 x̂Dx2 ŷDy

uẑ8L81 x̂mvTs /L82 x̂Dx2 ŷDyu
,

2 ẑ8L82 x̂mvTs /L82 x̂Dx2 ŷDy

uẑ8L81 x̂mvTs /L82 x̂Dx2 ŷDyu
,Vc1V D •Ua . ~8!

In Eqs.~7! and ~8!,

Ua5F ûH

ûV

ûH

G ; Uc5F ûH

ûV

ûV

G ~9!

are the transmitter and receiver polarization tensors, res
tively, and the modified scattering tensorS% 8 is related to the
scattering tensorS% defined in Eq.~4! as follows,

i ~Vc1V!m0

4p
~ I%2 r̂ sr̂ s!•S% 8~ r̂ s , r̂ i ,Vc1V!

5S% ~ r̂ s , r̂ i ,Vc1V!, ~10!

wherer̂ s'2 r̂ i is the unit direction connecting the scatter
center to the antenna aperture center. Notice that the
difference between Eqs.~7! and ~8! is the cross-range an
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
tenna beam pattern, exp$2@(kc1k)ax(mvTs2Dx)#
2/2L82% for

the stripmap mode, and exp$2@(kc1k)axDx#
2/2L82% for the

spotlight mode.
The target types considered in this work include a spe

lar, dihedral, trihedral, and tophat reflector. The specu
reflector we model is a square flat plate with sides of len
2r t and a perfectly conducting surface. Its bistatic scat
ing tensor can be calculated from physical optics. The
hedral reflector we consider consists of two perfectly c
ducting rectangular plates 1 and 2, whose edges meet
right angle. The two plates are squares with sides of len
A2r t . The orientation of this dihedral is defined by tw
unit vectors: the dihedral axisn̂axis is the intersecting edge
of the two plates, and the normal axisn̂face is perpendicular
to n̂axis and bisects the 90-deg angle formed by the t
plates. Four terms in the reflected field from this dihed
are significant: specular reflection from plate 1 to the rad
specular reflection from plate 2 to the radar; double refl
tion from plate 1 to plate 2 to the radar; and double refl
tion from plate 2 to plate 1 to the radar. To calculate the
terms, we parallel the approach in Ref. 27. The two sing
reflection terms are obtained as was done in the spec
reflector case. The two double-reflection terms are obtai
by using geometric optics to calculate the reflection fro
the first plate to the second, which is then used as the i
dent wave for calculating the double-reflection contributi
to the radar return via the physical-optics approximati
The analytic expressions for the scattering tensors o
specular and a dihedral reflector are given in Ref. 26.

The trihedral reflector consists of three perfectly co
ducting rectangular plates 1, 2, and 3, whose edges me
right angles. The three plates are squares with side
lengthA2r t . Each pair of plates intersect at an edge. T
three intersecting edges form a rectangular coordinate
tem (x̂b ,ŷb ,ẑb). Hence the orientation of the trihedral re
flector can be defined by the spatial relation between
trihedral coordinate system (x̂b ,ŷb ,ẑb) and the original co-
ordinate system (x̂,ŷ,ẑ). In the default orientation, the tri
hedral sits on top of the ground and faces the radar loca
at m50, so thatẑb is identical toẑ and ŷ5( x̂b1 ŷb)A2. In
general, the trihedral reflector can rotate around theẑb , the
( x̂b1 ŷb)/A2, or the (2 x̂b1 ŷb)/A2 axis. In most literature
on radar target recognition, the trihedral reflector is mo
eled as a point scatterer with an isotropic scattering patt
We adopt a more electromagnetics-based approach to
culate its scattering coefficient. Similar to the case of di
dral, we compute the distinct physical-optics terms of
radar return corresponding to the rays with differe
bounces. They are specular reflections from plates 1, 2,
3: double reflections via the paths of plate 1 to 2, 1 to 3
to 1, 2 to 3, 3 to 1, and 3 to 2; and triple reflections via t
paths of plate 1 to 2 to 3, 1 to 3 to 2, 2 to 1 to 3, 2 to 3
1, 3 to 1 to 2, and 3 to 2 to 1. Except for a very limite
spatial regime, the triple reflection terms dominate
double- and specular-reflection terms. To obtain a trip
reflection term of the scattering field, we use geome
optics to calculate the reflection from the first plate to t
second, and the second to the third, which is then use
the incident wave for calculating the triple-reflection co
tribution to the radar return via the physical-optics appro
mation. This method parallels the one used in dihedral
a

r

-

t
f

-

.
l-

d

s

culation. Compared with the simple assumption of a po
scatterer, the electromagnetics-based approach is ab
characterize the broad but nonisotropic spatial scatte
pattern of a trihedral reflector.

The tophat reflector consists of a perfectly conduct
cylinder sitting on top of a circular perfectly conductin
plate; the overall shape is that of a tophat. The radius
the height of the cylinder are both 2r t , while the radius of
the circular plate is 4r t . We assume the bottom of th
tophat is located on the ground. The entire reflector, incl
ing the circular plate and the cylinder, is symmetric to theẑ
axis. Unlike the case of trihedral or dihedral, there is
need to specify the orientation of a tophat. The scatte
field from a tophat reflector consists of five terms: t
specular reflections from the top plate, the side of the c
inder, the bottom plate, and the double reflections via
paths of the bottom plate to the cylinder, and of the cylind
to the bottom plate. Like a dihedral, a tophat has most of
scattered field coming from the double-reflection terms. B
different from a dihedral, the double reflections from
tophat are strong for all incident directions due to the sy
metric geometry of the cylinder. To obtain a doubl
reflection term of the scattering field, we use geome
optics to calculate the reflection from the bottom plate
the cylinder, or the cylinder to the bottom plate, and th
use this geometric-optics field as the incident wave for c
culating the double-reflection contribution from the cyli
der or the bottom plate via the physical-optics approxim
tion.

The specular, dihedral, trihedral, and tophat reflect
embody different types of scattering mechanisms. The
dar return from a specular reflector is a single bounce;
return from a dihedral or a tophat is mostly double bounc
while the return from a trihedral is dominated by tripl
bounce terms. The distinction in terms of the number
bounces makes significant differences in the polarime
patterns of these reflectors’ radar returns. Figure 2 ill

Fig. 2 Reflector types. Upper left: specular: upper right: dihedral:
lower left: trihedral: lower right: tophat.
2133Optical Engineering, Vol. 42 No. 7, July 2003
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trates the four reflector types.
In addition to the target return we have just modeled,

need a physics-based approach for treating clutter. Clu
typically refers to the radar return from anything other th
the desired target. In this study, clutter is assumed to
reflection from an infinite-extent rough ground surface.
calculate the clutter return, we apply a backpropagat
formulation21 and the Kirchhoff approximation.28 The re-
sultant analytical expression for clutter return is in the fo
of a 2-D integral over the ground planexb2yb

26:

r clutter~m,t!'2
APTVc

2axay

2pc2L82
exp~ i2kcL8!

3sin~c!E
2`

` E
2`

`

dxbdyb

3p@t22yb cos~c!/c#

3exp@~ ikc /L82kc
2ax

2/2L82!~xb2mvTs!
2#

3exp@~ ikc /L82kc
2ay

2/2L82!yb
2 sin2~c!#

3exp$ i2kc@yb cos~c!1h~xb ,yb!sin~c!#%

3FRHH~xb ,yb!

RVV~xb ,yb!

RHV~xb ,yb!
G , ~11!

for stripmap-mode operation, and

r clutter~m,t!'2
APTVc

2axay

2pc2L82
exp~ i2kcL8!

3sin~c!E
2`

` E
2`

`

dxbdyb

3p@t22yb cos~c!/c#
h
ion
ally
re
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r

3exp@ ikc /L8~xb2mvTs!
2#

3exp@2~kc
2ax

2/2L82!xb
2#

3exp@~ ikc /L82kc
2ay

2/2L82!yb
2 sin2~c!#

3exp$ i2kc@yb cos~c!1h~xb ,yb!sin~c!#%

3FRHH~xb ,yb!

RVV~xb ,yb!

RHV~xb ,yb!
G , ~12!

for spotlight-mode operation. In these expressio
h(xb ,yb) is the surface height at (xb ,yb), RHH , RVV , and
RHV are theHH, VV, andHV components of the dyadic
reflection tensorR% . The clutter in Eqs.~11! or ~12! can be
interpreted as the sum of contributions from all points
the ground plane, whose scattering coefficients are pro
tional to the local reflectivities.

We model h(xb ,yb), RHH(xb ,yb), RVV(xb ,yb), and
RHV(xb ,yb) in Eqs. ~11! and ~12! as stochastic processe
Paralleling the work in Refs. 21 and 22, we define a fie
transition coefficient:

T~xb ,yb!5exp@ i2kch~xb ,yb!sin~c!#FRHH~xb ,yb!

RVV~xb ,yb!

RHV~xb ,yb!
G .

~13!

Assuming thatA^h2&@lc , and that the reflection coeffi
cientsRab are independent of the surface height profileh,
we can takeT to be a zero-mean, circulo-complex, whit
vector Gaussian random process, fully characterized by
^T~xb ,yb!T†~xb8 ,yb8!&5
lc

2

sin2~c!
d~xb2xb8!d~yb2yb8!

3F ^uRHH~xb ,yb!u2& ^RHH~xb ,yb!RVV* ~xb ,yb!& ^RHH~xb ,yb!RHV* ~xb ,yb!&

^RHH* ~xb ,yb!RVV~xb ,yb!& ^uRVV~xb ,yb!u2& ^RHV* ~xb ,yb!RVV~xb ,yb!&

^RHH* ~xb ,yb!RHV~xb ,yb!& ^RVV* ~xb ,yb!RHV~xb ,yb!& ^uRHV~xb ,yb!u2&
G . ~14!
d

el,
Note that the correlation matrix in Eq.~14! includes
the polarimetric behavior of the clutter return, whic
can depend significantly on the geographic reg
under inspection. We assume there is a statistic
uniform terrain texture within the radar footprint. Therefo
the correlation matrix in Eq.~14! is approximately
independent ofxb and yb . Empirical work7 suggests
that: all the off-diagonal components in Eq.~14! are
insignificant except for theHH3VV terms; the HH
3HH and VV3VV terms are approximately equal; an
the strength ofHV3HV term is significantly smaller
than that of the HH3HH term, unless multiple
scattering is prominent. Thus, in our radar clutter mod
we use
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^T~xb ,yb!T†~xb8 ,yb8!&5
lc

2

sin2~c!
d~xb2xb8!d~yb2yb8!

3F 1 r 0

r* 1 0

0 0 e
G , ~15!

where 0,uru,1 and 0,e,1.
The final element in our radar signal model is receiv

noise. Typically, this is thermal noise, and has a white sp
trum. In this work, for both stripmap- and spotlight-mod
operations, the receiver noisernoise(m,t) is assumed to be a
zero-mean, circulo-complex, vector Gaussian stocha
process that is white in all its domains, namely its discre
time indexm, its continuous-time parametert, and its vec-
tor ~polarimetric! domain. Thus it is completely characte
ized by the following correlation matrix,

^rnoise~m,t!rnoise
† ~m8,t8!&5N0d@m2m8#d~t2t8!

3F 1 0 0

0 1 0

0 0 1
G . ~16!

Both of the unwanted components of the radar return,
clutter, and the noise are stochastic in our model. Beca
they have completely different physical origins, we assu
that they are statistically independent of each other.

2.2 SAR Processor Models

In this work, two types of SAR image processing syste
are considered: an adaptive-resolution processor an
whitening-filter processor. An adaptive-resolution proces
is a conventional SAR processor with adjustable proces
durations. In stripmap-mode operation, the incoming ra
return is passed through chirp compression filters in b
the cross-range~discrete-time! and range~continuous-time!
domains. The output from these chirp compression filter
then video detected to form a radar intensity image. T
impulse responses for the chirp compression filters are

h1@m#5exp@~2 ikc /L82kc
2ax

2k2/2L82!~mvTs!
2#

and ~17!

h2~t!5exp@~ ipW0 /T024/T0
2!t2#.

When the resolution parameterk51, h1@m# is the complex
conjugate of the cross-range-dependent factor in the r
return from a point scatterer. Similarly,h2(t) is the com-
plex conjugate of the range-dependent factor in the ra
return from a point scatterer. The point-scatterer radar
turn is obtained by carrying out the integral in Eq.~8! under
the assumption that 1.Dx5Dy50, 2. Vc@V within the
bandwidth, and 3. the scattering tensorS% 8 of a point scat-
terer is the identity tensorI%8. A conventional 2-D stripmap
SAR processor uses chirp compression filtersh1@m# and
h2(t) arranged~by settingk51! to be matched filters for
the radar return from a point scatterer. An extended ta
e

a

r

r

t

can have a very different return duration than that of a po
scatterer. Thus our adaptive-resolution processor will
optimized overk to achieve the best detection performan
for such an extended target.

In spotlight-mode operation, a standard interpretation
the radar return is to conceive it as a convolved form of
2-D Fourier transform of the terrain reflectivity profile
namely the tomographic rendition of the terrain reflectiv
distribution.16,29 An adaptive-resolution spotlight-mod
SAR processor29 first dechirps the radar-return signal alon
the range and cross-range directions. The dechirped sig
which is still continuous for the range time, is sampled
become a 2-D discrete-time signal. The sampled signal,
ter rearrangement by a polar formatter, then undergoe
2-D discrete Fourier transform operation. In this process
the cross-range processing duration, which is the ang
width of the polar-format annular region, and the ran
processing duration, which is the radial width of the pol
format annular region, are variables. To be specific, let
cross-range indexm of the discrete dechirped signal chos
for further processing be from2ma/2 to ma/2, and let the
range indexn for further processing be from2na/2 to na/2.
Thus ma and na represent the cross-range and range p
cessing durations, respectively. To be consistent with
notation in Eq.~17!, we define

ma[
2A2L8

kkcaxvTs
, na[

T0

Tr
. ~18!

Thus for the samek, the processing durations of th
adaptive-resolution stripmap-mode SAR and the spotlig
mode SAR processors are identical. The casek51 corre-
sponds to the conventional spotlight-mode SAR proces

Whereas the adaptive-resolution schemes just descr
can enhance SAR image resolution, they do not, in gene
represent optimum receivers for binary detection of a
terministic target return embedded in stochastic clutter
noise. The optimum Neyman-Pearson processing sch
for a stripmap-mode SAR signal uses a filter to whiten
clutter plus noise, followed by a matched filter correspon
ing to the target-return waveform passed through the w
ening filter, followed in turn by video detection, samplin
and a threshold test. The form of the whitening filter
determined by the covariance function of the clutter-plu
noise component of the radar return. The architecture o
spotlight-mode whitening processor is essentially the sa
as that for the stripmap-mode whitening processor. T
only differences being that the spotlight-mode whiteni
processor must use time-shift compensation in its front e
and, of course, different impulse responses for its whiten
and matched filters.

The whitening-filter processor is conceptually importa
in that it is the Neyman-Pearson optimum processor for
target detection problem. As such, its receiver operat
characteristic—its detection versus false-alarm probab
behavior—bounds the performance of any realizable p
cessor. By comparing the detection performance of
adaptive-resolution processor with that of a whitening p
cessor, we can see how far the former’s detection per
mance is from the ultimate theoretical limit. By comparin
the detection performance of the optimized adapti
2135Optical Engineering, Vol. 42 No. 7, July 2003
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
resolution processor with its conventional-processor~k51!
limit, we can quantify the importance of treating extend
targets differently from point scatterers.

3 Multicomponent Target Detection

Targets in real SAR campaigns, such as tanks, are c
posed of small reflectors. In this section, we deal with
detection problem of the targets with multiple reflect
components.

A multicomponent target is a collection of simple refle
tors located at different positions. The radar-return sig
from a single reflector located at (Dx ,Dy,0) with respect to
the scene center can be obtained from Eqs.~7! ~stripmap
mode! or ~8! ~spotlight mode!. Because we neglect multipl
scattering between different reflectors, the radar-return
nal from a multicomponent target is the sum of the con
butions from all its individual scatterers. On the other ha
the clutter and noise components in the radar return
unaltered by the change of target.

The multicomponent target detection problem is a bin
hypothesis test: determine whether a~known! multicompo-
nent target is present or absent from the given radar im
corrupted with clutter and noise. Complete informati
about the multicomponent target includes the geome
type, size, material constitution, orientation, and center
cation of each reflector, and the phase of the radar re
from each reflector. An effective target detection sche
need not necessarily take all of these parameters as g
Indeed, it may not be feasible to simultaneously cope w
variations of all of these parameters. In this section,
choose to investigate two cases: each target componen
a random phase; and each target component has a ran
phase and a random position.

In keeping with the aim to quantify, from a fundament
principles viewpoint, the target-recognition performan
advantage of polarimetric adaptive-resolution processor
compared to conventional SAR imagers, the multicom
nent target models chosen for investigation here are no
complicated as a real-world object, such as a tank or tru

3.1 Multicomponent Target Detection with Unknown
Phases/Positions

The binary hypothesis testing problem for the 2-D rad
return of anM-component target can be formulated as f
lows: the IF complex envelope of radar return is

r ~m,t!'r clutter~m,t!1rnoise~m,t! ~19!

when the target is absent~hypothesisH0), or it is

r ~m,t!' (
p51

M

exp~ i f̃p!r p~m2mp ,t2tp!1r clutter~m,t!

1rnoise~m,t! ~20!

when the target is present~hypothesis H1). Here
r clutter(m,t) and rnoise(m,t) are clutter and noise comple
envelopes, respectively, as modeled in Sec. 1. The phasf̃p
represents the incoherence of thep’th target component,
and the 2-D time delay (mp ,tp) is proportional to the lo-
cation of thep’th target component (Dx

p ,Dy
p) via the rela-
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tion (Dx
p ,Dy

p)5@mpvTs ,ctp/2 cos(c)#. We assume that the

$f̃p% are independent and uniformly distributed on@0,2p!.
Two target-location conditions are considered: 1. t
$(Dx

p ,Dy
p)% are known; and 2. the$(Dx

p ,Dy
p)% are indepen-

dent random vectors that are uniformly distributed with
given uncertainty areas.

Consider first the detection of a multicomponent targ
with random phases and known reflector locations. To
complish the Neyman-Pearson optimum detection sche
we first pass the radar returnr (m,t) through the whitening
filter, leading to a complex envelope after the whiteni
filter, satisfying:

s~m,t!'w~m,t! ~21!

when the target is absent~hypothesisH0), and

s~m,t!' (
p51

M

exp~ i f̃p!sp~m2mp ,t2tp!1w~m,t! ~22!

when the target is present~hypothesisH1). Herew(m,t) is
the clutter-plus-noise after the whitening filter, which
white in m, t, and polarimetric domains, andsp is the out-
put of r p from the whitening filter. When the spatial sep
rations between the individual target components are la
enough, the following orthogonality condition will prevai

(
m52`

` E
2`

`

dtsp
†~m2mp ,t2tp!•sq~m2mq ,t2tq!'0

~23!

for pÞq. The reason is thatsp(m2mp ,t2tp) or sq(m
2mq ,t2tq), the footprint of reflectorsp or q, has nonva-
nishing values only within a finite area on the (m,t) plane.
Thus when the two reflectors have a large spatial sep
tion, eithersp(m2mp ,t2tp) or sq(m2mq ,t2tq) has to
be zero at every point on the (m,t) plane. Under the or-
thogonality condition, which we assume to be true in
that follows, the likelihood ratio for the binary hypothes
test in Eqs.~21! and ~22! is26

L~s!5
psuH1

~suH1!

psuH0
~suH0!

5 )
p51

M

expF2 (
m52`

` E
2`

`

dtsp
†~m,t!•sp~m,t!G

3I 0F2U (
m52`

` E
2`

`

dtsp
†~m2mp ,t2tp!•s~m,t!UG ,

~24!

whereI 0 is the modified Bessel function of zero order:

I 0~x![
1

2p E
0

2p

df exp~x cosf!.
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Fig. 3 GLR detector for the multicomponent target with unknown phases and positions.
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The Neyman-Pearson optimum detection scheme for
binary hypothesis test is a threshold detector based on
likelihood ratio ~LR!, which can be simplified to

)
p51

M

I 0F2U (
m52`

` E
2`

`

dtsp
†~m2mp ,t2tp!•s~m,t!UG

.

,
say H0

say H1

b, ~25!

where the thresholdb is chosen to meet the constraint o
the false-alarm probability.

When, in addition to the phases$f̃p%, the target-
component delay times$(mp ,tp)% are also random vari
ables, it becomes difficult to write down the likelihood rat
for the binary hypothesis testing problem. It is possib
~and useful! to formulate the generalized likelihood rat
and develop a detector scheme on that basis.19 The gener-
alized likelihood ratio is26:

L~s!5 max
m1 ,...,mM ,t1 ,...tM

H )
p51

M

expF2 (
m52`

` E
2`

`

dt

3sp
†~m,t!•sp~m,t!G

3I 0F2U (
m52`

` E
2`

`

dtsp
†~m2mp ,t2tp!•s~m,t!UG J .

~26!

So the generalized-likelihood-ratio~GLR! detector based
on Eq.~26! can be written in the following form:
e)
p51

M

max
mp ,tp

H I 0F2U (
m52`

` E
2`

`

dtsp
†~m2mp ,t2tp!•s~m,t!UG J

.

,
say H0

say H1

b. ~27!

The GLR detector is basically an LR detector that us
maximum-likelihood estimates of the component delays
though they were the true reflector locations. The archit
ture of this GLR detector is sketched in Fig. 3.

Performance analysis for the GLR detector involv
level crossing theory for a 2-D random field. Helstrom30

provided a comprehensive treatment for the calculation
probabilities of detection and false alarm for a 1-D rad
signal. He approximated the value ofPD from a GLR de-
tector with the value ofPD from a LR detector with known
position at a high signal-to-noise ratio. ForPF , he pre-
sented an analytical approach derived from the level cro
ing theory of a stationary 1-D random process, which
valid for smallPF when the uncertainty region for locatio
exceeds the resolution length of the intensity profile af
the matched filter. Shapiro et al.31 presented a finite-bin
hypothesis-test approach for calculatingPD and PF of a
1-D radar return. Based on these works, we developed
mulations for evaluating the probabilities of detection a
false alarm of the 2-D GLR detector. The details can
found in Ref. 26. We only present some numerical e
amples.

Suppose that the target of concern consists of three id
tical square specular reflectors at different locations. For
target components, the half length of each square refle
plate,r t , is 0.5 m, and the plate’s normal direction isẑ8.
The chirp bandwidthW05200 MHz, the clutter-to-noise
ratio CNR54.28331023 ~noise dominant!, and all the re-
maining parameter values are the same as those in Tab
For the target with known positions, the center locations
2137Optical Engineering, Vol. 42 No. 7, July 2003



are

s of
re

are
uar
and
f th
re 3
er-

tics
th
nd
ach
for
ty,
th
he
cu-

et,
nce
t th
se-
e
al

igh
du-
nal
he-
ent
et
of

inty
ally
the

ent
urn

rson
,
in

m
on-

ion,
tics

Yeang, Cho, and Shapiro: Target-recognition theory . . .
the three reflectors with respect to scene center
(Dx ,Dy)5(0,0), ~27,23!, and~5,25! ~in units of meters!.
For the target with random positions, the center location
the three reflectors are uniformly distributed within squa
uncertainty regions centered at~0,0!, ~27,23!, and~5,25!.
Two sets of specifications for these uncertainty regions
considered. In the first set, the edge lengths of the sq
uncertainty regions for components 1, 2, and 3 are 4, 6,
4 m, respectively. In the second set, the edge lengths o
square uncertainty regions for components 1, 2, and 3 a
3, and 3 m, respectively. Figure 4 plots these two unc
tainty specifications.

Figure 5 plots the receiver operating characteris
~ROCs! of the LR detectors for the example target wi
unknown positions. The figure includes both stripmap- a
spotlight-mode results. There are three curves in e
panel, corresponding to the behavior of the LR detector
the multicomponent target with no position uncertain
with position uncertainty specification 1 in Fig. 4, and wi
position uncertainty specification 2 in Fig. 4. Note that t
figure is plotted on probability-paper axes to permit ac
rate display of both high~near unity! and low ~near zero!
probability values. We first notice that, for the same targ
spotlight-mode operation has better detection performa
than does stripmap-mode operation. The reason is tha
spotlight-mode target return has higher signal-to-noi
plus-clutter-ratio~SNCR! values than the stripmap-mod
target return for all individual components. The physic
reason behind this behavior is also clear: because spotl
mode operation illuminates the target for a longer time
ration than the stripmap-mode operation, its postfilter sig
strengths are correspondingly higher. In addition, two p
nomena in the numerical results in Fig. 5 are consist
with intuition: 1. when the precise information on the targ
components’ locations is lost, the detection performance
the GLR detector is degraded; 2. the larger the uncerta
regions are, the greater this degradation becomes. Fin
we see that the ROC curves in Fig. 5 that correspond to
stripmap- and spotlight-mode operations have differ
slopes. This is a consequence of different target-ret
spectra~along the cross-range direction! between the two
synthetic-aperture operating modes.

Table 1 Table of parameter values for SNCR calculations.

Flight parameters Radar parameters Reflector parameters

aircraft altitude
L55000 m

antenna radii
ax5ay51 m

target radii
r t51.5 m

aircraft speed
u5100 m/s

Tx power
PT51 W

relative permittivity
e r5101 i5

slant angle
c545 deg

radar frequency
fc5qc/2p510 GHz

HV clutter strength
e50.2

pulse-repetition period
Ts510 ms

HH3VV correlation
r50.57

pulse width
T050.05 ms

chirp bandwidth
W05200 MHz
2138 Optical Engineering, Vol. 42 No. 7, July 2003
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3.2 Multicomponent Target Detection:
Neyman-Pearson Processor Versus
Conventional SAR Processor

The target detectors presented so far are Neyman-Pea
optimal, i.e., they optimally combine polarimetric
whitening-filter, and adaptive-resolution processing. As
our work on single-component target detection~presented
in Ref. 26!, the target detection performance of optimu
multicomponent target processors must exceed that of c
ventional SAR processors for such targets. In this sect
we explicitly compare the receiver operating characteris

Fig. 4 Specifications for the uncertainty-region geometries. Upper
panel: uncertainty specification 1. Lower panel: uncertainty specifi-
cation 2. Notice that (0,0) is the scene center of the antenna foot-
print area. The aircraft flies along the x direction.
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
of the Neyman-Pearson processors with those of the c
ventional SAR processors to quantify the former’s perf
mance advantage.

The conventional SAR processors for a multicompon
target are straightforward extensions of the single-refle
versions that were described in Sec. 2. In contrast to
Neyman-Pearson processors that possess a bank of ma
filters for the target’s component reflectors, a conventio
SAR processor has only one full-resolution~k51! chirp-
compression SAR imager for stripmap-mode operation

Fig. 5 Receiver operating characteristics. Three specular reflectors:
likelihood-ratio detector for target with no position uncertainty
(dashed dot curve); GLR detector for target with position uncertainty
specification 1 (solid curve); and GLR detector for target with posi-
tion uncertainty specification 2 (dashed curve). The upper panel is
the stripmap-mode operation, and the lower panel is the spotlight-
mode operation.
-

ed

one full-resolution ~k51! polar-format SAR imager for
spotlight-mode operation. In addition, instead of the fu
polarimetric signal dealt with in the Neyman-Pearson p
cessor, only one single polarization is considered in
conventional SAR processor~here we chooseHH). The
target detectors after the SAR imager are similar to th
counterparts in Neyman-Pearson processors: they sa
this output image according to the available information
target-component locations and calculate the likelihood
tio or generalized likelihood ratio.

The receiver operating characteristics for these conv
tional SAR multicomponent target detectors can be cal
lated via techniques similar to those used for the Neym
Pearson SAR processor.26 Figure 6 compares the receive
operating characteristics of the conventional~full-
resolution! SAR processor, the full-polarimetric Neyman
Pearson processor, and the scalar~single-polarized!
adaptive-resolution processor when the target-compon
locations and radar-return amplitudes are exactly kno
The target scenario is different from that specified in Fig.
In this case, the multicomponent target consists of th
specular reflectors withr t51.7 m and the same know
(Dx ,Dy) positions as the one in Fig. 5. The clutter-to-noi
ratio is set to be 8.5631024. The other parameters ar
identical to those used in Fig. 5. Figure 7 also compares
receiver operating characteristics of these three proces
when the target-component locations and radar-return
plitudes are exactly known, but with a different parame
set. In Fig. 7 all the parameter values are identical to th
used in Fig. 5. Figure 8 is a comparison similar to Fig.
when the target-component locations are independently
uniformly random within 2-D uncertainty regions. It i
clear in all cases from Figs. 6–8 that the Neyman-Pear
processor has a better detection performance than the
ventional SAR processor. Thus the motivation for studyi
the polarimetric, whitening-filter, adaptive-resolution pr
cessor is verified: we have demonstrated from a fi
principles approach that this kind of processor indeed o
performs the conventional full-resolution SAR processor
terms of not only single-component but also multicomp
nent target detection.

The superior target-detection performance of t
Neyman-Pearson processors is the result of their hav
higher SNCR values for the target components. Three
tors are responsible for this SNCR advantage: the effec
the whitening filter, the adaptive-resolution effect, and t
polarimetric effect. In the multicomponent target examp
we have considered so far, noise dominates over clu
Thus the whitening filter does not have a major contrib
tion. The adaptive-resolution effect can be very importa
when the size of the reflector is much larger~stripmap and
spotlight mode! or smaller~spotlight mode! than the diam-
eter of antenna aperture. The polarimetric effect in
Neyman-Pearson processor can enhance the SNCR v
by a factor up to 2. In Fig. 6, the performance gap betwe
the conventional SAR processor and adaptive-resolu
processor and the gap between the adaptive-resolution
cessor and polarimetric Neyman-Pearson processor
both salient. Therefore, the performance improvement
the Neyman-Pearson processor due to adaptive-resolu
processing is as significant as that due to polarimetric s
thesis. In Figs. 7 and 8, the polarimetric effect is mo
2139Optical Engineering, Vol. 42 No. 7, July 2003
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
salient than the adaptive-resolution effect because the
sen target size renders the full resolution close to the o
mum resolution.26

4 Multicomponent Target Classification
with Known Reflector Positions

Target detection is binary target recognition: is a particu
target present or not? A normal automatic target recogni
system must deal with anN-ary problem: ofN>2 target
types, which one~if any! is present, based on the rada
return information? This problem is also known as clas

Fig. 6 Receiver operating characteristics: conventional SAR pro-
cessor (solid curve) versus polarimetric (dashed dot curve) and non-
polarimetric (dashed curve) Neyman-Pearson processors, multi-
component target with random phases, three specular reflectors
with r t51.7 m; and CNR58.5631024. (a) is the stripmap-mode op-
eration, and (b) is the spotlight-mode operation.
2140 Optical Engineering, Vol. 42 No. 7, July 2003
-
fication. In this section, we extend our previous results
target detection problems to multicomponent target cla
fication problems with known reflector positions. We app
the Neyman-Pearson or conventional SAR target detec
we have already developed to form Neyman-Pearson
conventional SAR target classifiers. We also come up w
a simple method for assessing the performance of th
classifiers.

4.1 Classification Scheme

A multicomponent target classification problem is form
lated in the following manner. Lets(m,t) be the radar re-

Fig. 7 Receiver operating characteristics: conventional SAR pro-
cessor (solid curve) versus polarimetric (dashed dot curve) and non-
polarimetric (dashed curve) Neyman-Pearson processors,
likelihood-ratio detector, multicomponent target with random
phases, and three specular reflectors. (a) is the stripmap-mode op-
eration, and (b) is the spotlight-mode operation.
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
turn from a multicomponent target after passing throug
whitening filter. Therefore, it has the unwanted clutter-plu
noise component whitened to unity spectral density. Th
following Eqs. ~21! and ~22!, if Hi denotes that targeti
among allN possible targets is present,s(m,t) can be writ-
ten as follows:

under Hi : s~m,t!5 (
p51

Mi

exp~ i f̃pi !spi~m2mpi,t2tpi !

1w~m,t! for i 51,...,N. ~28!

Fig. 8 Receiver operating characteristics: conventional SAR pro-
cessor (solid curve) versus polarimetric (dashed dot curve) and non-
polarimetric (dashed curve) Neyman-Pearson processors, GLR de-
tector, multicomponent target with random phases and position
uncertainty specification 2, 3 specular reflectors. (a) is the stripmap-
mode operation, and (b) is the spotlight-mode operation.
,

Here w(m,t) is the vector clutter-plus-noise complex e
velope after the whitening filter. By construction it is whi
in the cross-range-time~m!, the range-time~t!, and the po-
larimetric ~vector! domains. Likewise,spi(m,t) corre-
sponds to the postwhitening-filter radar-return complex
velope from thep’th component of thei’th target when the
component is located at the scene center. The time de
mpi andtpi for this component are determined by its actu
location. The phases$f̃pi% are independent random var
ables that are uniformly distributed within@0,2p!; they rep-
resent the incoherence of each target component with
spect to other components as well as the noise. When
spatial separations between the individual target com
nents are large enough, the following orthogonality con
tion prevails@similar to the condition in Eq.~23!#:

(
m52`

` E
2`

`

dtsi
†~m2mi ,t2t i !•sj~m2mj ,t2t j !'0 ~29!

for any two components located at different positions. F
thermore, the radar return from a specular or trihedral
flector is approximately orthogonal to that from a dihed
or tophat reflector due to the fact that the radar return w
from a specular or trihedral reflector is odd bounced, wh
the radar return wave from a dihedral or tophat reflecto
even bounced. Table 2 enlists the correlation of the co
plex radar-return waveforms corresponding to a specu
dihedral ~with 0, 45, or 90-deg orientation angle!, tophat,
and trihedral reflector, all with the edge length of o
meter. The numerical values in Table 2 confirm that t
specular and trihedral returns are approximately orthogo
to the dihedral and tophat returns.

We can develop a target classifier for a repertoire
multicomponent targets based on the single-target de
tors. Based on a MAP rule, a single-target detector can
constructed by passing the radar-return signal throug
bank of matched filters~matched to all target reflectors! and
then combining the outputs from the matched filters. S
cifically, the likelihood ratio for MAP target detection is

l 1~s!5
pr uH1

~r 1 ,r 2 ,...,r MuH1!

pr uH0
~r 1 ,r 2 ,...,r MuH0!

5 )
m51

M

exp@2Em#I 0~2ur mu!, ~30!

where hypothesisH0 means the target is absent,H1 means
the target is present,Em is the energy of them’th compo-
nent return, andI 0 is the zero-order modified Bessel fun
tion. Here, r is the vector of the matched filter outpu
sampled at the proper times; it has complete informat
about the whole radar-return signal needed for the clas
cation operation. At the target detector’s output stage
value equal or proportional to the likelihood ratio is com
pared with a threshold level to decide on the absence
presence of that target. When there is more than one
sible target type, we can pass the radar return throug
bank of target detectors, one for each target type. The
sulting real-valued output levelsl 1 ,...,l N are the likelihood
ratios of conditionsH1 ,...,HN with respect to conditionH0
2141Optical Engineering, Vol. 42 No. 7, July 2003
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Table 2 Correlation coefficients of various target waveforms. The correlation coefficient of two com-
plex waveforms is defined to be the magnitude of the inner product (the integral over the product of the
first waveform times the complex conjugate of the second waveform) divided by the square root of the
product of the first waveform’s energy times the second waveform’s energy. The upper panel corre-
sponds to the spotlight mode, and the lower panel corresponds to the stripmap mode. All reflectors
have the dimension of 1 m.

Specular
Dihedral
0 deg

Dihedral
45 deg

Dihedral
90 deg

Trihedral
0 deg Tophat

Specular 1.0 0.0021 0.0017 2.92431024 0.1205 1.327131024

Dihedral
0 deg

0.0021 1.0 0.649931026 0.1583 5.031831024 0.1327

Dihedral
45 deg

0.0017 6.649931026 1.0 6.246331025 6.345331024 3.176731024

Dihedral
90 deg

2.924231024 0.1583 6.246331025 1.0 0.0012 0.2468

Trihedral
0 deg

0.1205 5.031831024 6.345331024 0.0012 1.0 8.960231024

Tophat 1.327131024 0.1327 3.176731024 0.2468 8.960231024 1.0

Specular
Dihedral
0 deg

Dihedral
45 deg

Dihedral
90 deg

Trihedral
0 deg Tophat

Specular 1.0 0.0021 0.0018 7.500131024 0.2577 3.684431024

Dihedral
0 deg

0.0021 1.0 8.042831026 0.3711 0.0011 0.3668

Dihedral
45 deg

0.0018 8.042831026 1.0 7.737531026 0.0015 2.614031024

Dihedral
90 deg

7.500131024 0.3711 7.737531026 1.0 0.0034 0.9572

Trihedral
0 deg

0.2577 0.0011 0.0015 0.0034 1.0 0.0013

Tophat 3.684431024 0.3668 2.614031024 0.9572 0.0013 1.0
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~clutter and noise only!. To carry out classification, we se
lect their maximum value: ifl p is maximum among
l 1 ,...,l N , then the classifier decides the target to be typep.

Evaluation of the performance of multicomponent targ
classification is computationally intensive, because the li
lihood values of different multicomponent targets a
densely correlated in general. Within the scope of t
work, we assume that each target component can be loc
anywhere, provided the orthogonality condition in Eq.~29!
holds. For the upper bound and the lower bound on
probability of correct classification~PCC! developed in this
section, the target components are assumed to be fixe
known positions, and the phase of the target signal fr
each component is randomly distributed in a uniform fa
ion, which represents the unavailability of accurate relat
phase information between the various components o
multireflector target. The radar-return model under this
get condition is specified by Eq.~28!, and the time delays
corresponding to the target component locations (mpk,tpk)
are presumed known.

4.2 Lower Bound on the Probability of Correct
Classification

A lower bound on the PCC can be calculated by finding
PCC for any suboptimal classifier. For a suboptimal clas
fier, we use a component-wise detection rule. Suppose
the components are mutually orthogonal and that four
flector types~specular, dihedral, trihedral, and tophat! are
considered. Then, we can carry out a binary detection~a
reflector of any type versus a null! for each reflector com-
ponent, and use these component decisions as inputs
~suboptimum! MAP N-ary decision rule. We can regard th
decision for each target component as establishing a bi
2142 Optical Engineering, Vol. 42 No. 7, July 2003
d

t

t

a
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discrete memoryless channel~DMC!, with transition prob-
abilities calculated from the model in Fig. 9.

Combining the transition probabilities of the DMC wit
an N-ary decision rule based on the DMC then yields
easily calculated error probability from which a PCC low
bound immediately follows. This method of obtaining
lower bound on the PCC can also be applied to the conv
tional full-resolution imager.

4.3 Upper Bound on the Probability
of Correct Classification

Obtaining an upper bound on the PCC is equivalent to fi
ing a lower bound on the error probability. If the reflect
phases were exactly known and optimally employed, th
the error probability would not be higher than the case
which the phases of all components are random. Given
act phases, the classification problem simply becomes
N-ary detection of the signals in an additive white Gauss
noise channel. In general, the error probability of detect
of N signals over the additive white Gaussian noise chan
is not available in a closed form. Thus, we again use
lower bound on this error probability.

PCC5(
i 51

N

Pr~say Hi uHi true!Pr~Hi !

5(
i 51

N

$12Pr~erroruHi true!%Pr~Hi !. ~31!
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Fig. 9 The component-wise classifier for the multicomponent targets with 1. unknown phases and 2.
unknown phases and positions. The upper panel is the overall architecture; the middle panel is the
DMC for targets with unknown phases; and the lower panel is the DMC for the targets with unknown
phases and positions.
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Pr~erroruHi true)

>Pr~erroruHi true, phase information given)

5PrS ø
j Þ i

Ei j uHi true, phase information given!. ~32!

HereEi j denotes the case$is82sj i<is82si i%, wheres8 is
a matched-filter-output vector, matched to all distinct tar
components, and properly normalized to make the no
part circulo-complex Gaussian with unit variance.si is the
mean ofs8 when the targeti is present. The prior probabil
ity of targeti, Pr(Hi), is assumed to be 1/N, i.e., all targets
will be assumed equiprobable.

De Caen’s inequality32 can be used to get a lower boun
on the probability of a union:

PrS ø
j 51

N

Aj D>(
j

Pr~Aj !
2

(kPr~AjùAk!
. ~33!

For j 51 to N, Aj is a subset of the sample space. Applyi
this inequality to the probability of error, we obtain

Pr~erroruHi true, phase information given)

>(
j Þ i

Q2~di j /2!

(kÞ i C~r jk ,di j /2,dik/2!
, ~34!

where

di j 5isi2sj i , r jk5
^si2sj ,si2sk&
isi2sj iisi2ski ,

Q~x!5
1

A2p
E

x

`

exp~2y2/2!dy,
C~r jk ,di j /2,dik/2!

5
1

2p~12r jk
2 !1/2

3E
di j /2

` E
dik/2

`

expF2
x222r jkxy1y2

2~12r jk
2 !

Gdxdy.

This inequality deals with only two joint Gaussian rando
variables, and we have all the constants needed for
evaluation, namely the distances between all signal poi
The error probability bound is thus easy to calculate. L
the lower bound on the PCC, this upper bound can be
plied to all processor models and both SAR operat
modes.

4.4 Numerical Results

Consider the target recognition problem for four targe
each consisting of 9 or 10 reflectors with different loc
tions, orientations, sizes, and types, as specified in Tab
We apply the upper and lower bounds on PCC that
derived in the previous sections to this target constellati
using the system parameters given in Table 1. Figure
plots the PCC bounds versus the inverse of the CNR
both the conventional classifier and the optimal whitenin
filter processor when both have a perfect knowledge of
get location. Also included in this figure are PCC resu
obtained from Monte Carlo simulations of these two pr
cessors. Figure 10 shows that the PCC lower bound for
whitening-filter processor is close to its simulation resu
For the conventional processor, the simulation shows
the PCC approaches a subunity, clutter-limited value in
limit of zero noise, i.e., when 1/CNR→0. It also shows that
the whitening-filter classifier has about 5-dB gain in term
of the SNCR as compared with the conventional proces
This advantage is due to the combined benefits accru
2143Optical Engineering, Vol. 42 No. 7, July 2003
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Table 3 Specification of target constellation. Note that (x,y) is the center location (in meters), u, f are
polar and azimuthal angles (deg), and r is half the side length of a reflector (in centimeters). S, D, Tr,
and To in columns denoted by t stand for specular, dihedral, trihedral, and tophat reflector, respec-
tively. The different sets of trihedral orientation angles denoted by a, b, c, d, e, and f mean: a: u5a
rotation around the (x̂b1 ŷb)/A2 axis51 deg, c5a rotation around the (2 x̂b1 ŷb)/A2 axis50.5 deg; b:
u520.5 deg, c51.5 deg; c: u521.5 deg, c50 deg; d: u51 deg, c521 deg; e: u51.3 deg, c522.1
deg; and f: u520.3 deg, c51.9 deg.

Target 1 Target 2 Target 3 Target 4

x,y u, f r t x,y u, f r t x,y u, f r t x,y u, f r t

2.5 20.2 a 5 Tr 22.7 20.7 288 46 4 S 2.5 20.2 a 5 Tr 22.7 20.7 288 46 4 S

0.6 20.5 b 4 Tr 0.6 20.5 b 4 Tr 0.3 1.4 290 43 10 D 0.6 20.5 b 4 Tr

22.0 21.5 290 45 9 S 20.2 20.5 ¯ 16 To 20.2 20.5 ¯ 16 To 20.2 20.5 ¯ 16 To

21.0 0.6 c 15 Tr 20.6 21.0 293 43 6 D 2.0 1.0 290 45 16 S 2.0 1.0 290 45 16 S

22.5 20.8 ¯ 5 To 22.5 20.8 ¯ 5 To 21.2 1.3 288 44 10 S 22.5 20.8 ¯ 5 To

1.2 21.6 d 8 Tr 1.2 21.6 d 8 Tr 21.5 1.0 290 45 13 D 1.2 21.6 c 8 Tr

3.0 21.5 290 45 16 S 20.7 20.1 285 43 19 D 20.7 20.1 285 43 19 D 3.0 21.5 290 45 16 S

0.6 20.7 ¯ 6 To 2.7 21.0 e 13 Tr 2.7 21.0 e 13 Tr 0.6 20.7 ¯ 6 To

1.5 21.0 f 8 Tr 0.2 21.5 290 49 9 D 1.5 21.0 f 8 Tr 0.2 21.5 290 49 9 D

20.6 1.4 290 44 15 S
o
ctor

h
er
a

from whitening-filter processing~which optimally sup-
presses clutter!, full polarimetric processing~which only
the optimal processor was presumed to have!, and adaptive-
resolution processing~which the optimal system uses t
exploit physics-based signatures of the various refle
2144 Optical Engineering, Vol. 42 No. 7, July 2003
components!. In the noise-dominant condition under whic
the clutter plus noise is close to white, the whitening filt
has little effect. The maximum polarimetric gain for
single reflector is up to 3 dB~usually identicalHH andVV
terms exist for single-bounced returns, while only theHV
Fig. 10 Optimal processor and conventional processor PCC upper and lower bounds for the target
constellation specified in Table 3 when target locations are known. Also included are the results of
50000-trial computer simulations of these two processors.
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
term exists for double-bounced returns!. So the adaptive-
resolution contribution is greater than 2 dB, comparable
the polarimetric contribution.

5 Multicomponent Target Classification
with Uncertain Reflector Positions

In this section, we extend the target classification and P
evaluation schemes developed in the previous sectio
multicomponent targets with uncertain positions.

5.1 Classification Scheme

First, we explore the classification of the targets with u
certain reflector positions. Incorporating the position unc
tainty of the reflector components, the radar return for e
hypothesis is modeled in the same form as that in Eq.~28!,
except the center locations (mpk,tpk) of the target compo-
nents are no longer fixed and known. The random variab
mpk, tpk are assumed to be mutually independent and e
random variable is uniformly distributed within@mpk

0

2M pk/2,mpk
0

1M pk/2# for mpk, and @tpk
0

2Tpk/2,tpk
0

1Tpk/2# for tpk. The position randomness models the va
ability or unavailability of the exact knowledge about som
aspects of a target reflector constellation in the real wo

Because the delay times are uniform random variable
is difficult to write down the likelihood ratio of two differ-
ent hypotheses. We can, however, formulate the GLR
develop a target classifier on that basis. For a specific r
ization of the delay times, the likelihood ratio of hypothes
Hk ~targetk! with respect to the null hypothesesH0 ~clutter
plus noise only! is:

l k~s;m1 ,...,mMk
,t1 ,...,tMk

!

5
pr uHk

~r 1 ,r 2 ,...,r Mk
uHk ;m1 ,...,mpk,t1 ,...,tMk

!

pr uH0
~r 1 ,r 2 ,...,r Mk

uH0 ;m1 ,...,mpk,t1 ,...,tMk
!

5 )
p51

Mk

exp~2Epk!I 0F2U(
m

E
2`

`

dt

3spk
†

~m2mpk,t2tpk!•r ~m,t!UG , ~35!

whereEpk is the energy of thep’th component of thek’th
target. For a given radar returnr (m,t), the likelihood ratio
is a function of m1 ,...,mMk

,t1 ,...,tMk
. The maximum

likelihood estimate of these parameters from the radar
turn is:

@m̂1 ...m̂Mk
t̂1 ...t̂Mk

#

5arg max)
p51

Mk

exp~2Epk!I 0F2U(
m

E
2`

`

dt

3spk
†

~m2mpk,t2tpk!•r ~m,t!UG , ~36!

wherem̂1 ,...,m̂Mk
,t̂1 ,...,t̂Mk

are the maximum likelihood

estimates over m1P@m1
02M1/2,m1

01M1/2#,...,mMk
t

-

-

P@mMk

0 2M Mk
/2,mMk

0 1M Mk
/2# and t1P@t1

02T1/2,t1
0

1T1/2#,...,tMk
P@tMk

0 2TMk
/2,tMk

0 1TMk
/2#. The GLR is

defined as the likelihood ratio when the unknown para
eters are replaced by their maximum likelihood estimat
Plugging Eq.~36! into Eq. ~35!, we have that:

GLR5 l k~r ;m̂1 ,...,m̂Mk
,t̂1 ,...,t̂Mk

!

5max)
p51

Mk

exp~2Epk!I 0F2U(
m

E
2`

`

dt

3spk
†

~m2mpk,t2tpk!•r ~m,t!UG . ~37!

The GLR detector based on Eq.~37! can be written in the
following form:

max)
p51

Mk H I 0F2U(
m

E
2`

`

dt

3spk
†

~m2ṁpk,t2tpk!•r ~m,t!UG J .

,
say H0

say Hk

b, ~38!

whereb is the threshold and the maximum is over the sa
domain as that in Eq.~37!. Furthermore, because the zer
order modified Bessel function is monotonically increasi
andm1 ,...,mMk

,t1 ,...,tMk
are mutually independent vari

ables, maximizing the overall product ofI 0 in Eq. ~38! is
equivalent to maximizing eachI 0 in the product. Hence the
GLR detector becomes

)
p51

Mk

maxH I 0F2U(
m

E
2`

`

dt

3spk
†

~m2mpk,t2tpk!•r ~m,t!UG J .

,
say H0

say Hk

b. ~39!

The form of the GLR detector is similar to the LR de
tector discussed in the previous section, except that in
GLR detector the value used to compare with the thresh
is maximized over the region of the delay time uncertain
This operation can be achieved by inserting a durati
limited peak detector after the video detection of the out
from each individual matched filter. A target classifier c
be built, as discussed in the previous section, by employ
a bank of target detectors, incorporating energy correctio
and choosing the largest output level.

To calculate the PCC for theN-ary target recognition
problem, we need to obtain the statistical structure of
GLR. As implied by Eq.~39!, to obtain the statistics of the
GLR we must solve the following general level-crossi
problem: for a complex 2-D random process with a giv
covariance function and a fixed real-valued threshold lev
what is the probability that the magnitude of this rando
process is smaller than the threshold level within a giv
area? When the target is absent or all the components
mismatched to the detector’s filters, then this random p
2145Optical Engineering, Vol. 42 No. 7, July 2003
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Yeang, Cho, and Shapiro: Target-recognition theory . . .
cess is approximately stationary. When at least one of
target components is matched to the detector’s filters,
process is nonstationary. As a result it is best to consider
level-crossing problems forH0 andHk (kÞ0) separately.

5.2 Lower Bound on the PCC

Paralleling the work in the last section, a component-w
detector can be exploited to obtain a lower bound on
PCC for the random-position case. Any suboptimal clas
fier will be inferior in its classification performance to th
optimum one. Thus, the PCC for a suboptimal target r
ognizer is a valid PCC lower bound for an optimum cla
sifier.

A component-wise detector can be used in the optim
target detector for a single-reflector target. We discrimin
the reflector type for each component separately, and
collect the results from each component-wise detecto
make a MAPN-ary decision. This is a valid classificatio
scheme, but not necessarily the optimum one. To obtain
PCC for this suboptimal classifier, we only need to kno
the transition probabilities for the component-wise detec
Assume the true target component is specular. We have
the transition probability,Q1[Pr~say specularuspecular is
true!, satisfies

Q15Pr~ l s. l 051uspecular is true!

5Pr@ I 0~2xs!exp~2Es!.1uspecular is true#

5Pr$xs.
1
2 I 0

21@exp~Es!#uspecular is true%

512Pr~xs,guspecular is true!, ~40!

where g5I 0
21@exp(Es)#/2, and xs is the output from the

maximum finder of the detector for the target with an u
known location~see Fig. 9!.

To evaluate the last term, we need to know the proba
ity structure ofxs . The radar return is passed through
filter that is matched to that of the specular return sign
The maximization process will pick up the peak value
the magnitude of the postmatched-filter signal within t
uncertainty region. If we partition the uncertainty regio
into resolution bins and assume that each bin is statistic
independent of the others, we can formulate the cumula
distribution function~CDF! of xs as follows:

Pr~xs,guspecular is true!5P1
Nb21~g!P2~g!, ~41!

whereNb is the number of bins,P1(g) is the probability
that the magnitude of the stationary whitened clutter-pl
noise is always less thang for a given bin area, andP2(g)
is the CDF of the output value from a perfectly match
signal sampled at the correct position.P1(g) can be calcu-
lated by applying 2-D level-crossing theory, andP2(g) can
be obtained analytically. Since we know the statistics ofxs ,
we can now evaluate the transition probabilityQ1 .

To calculate a transition probability, Q2

[Pr~say specularuno reflector is present), we need to kno
the statistics ofxs that is the radar return from clutter only
matched to the specular signal. Thus,xs will be stationary
2146 Optical Engineering, Vol. 42 No. 7, July 2003
n

t

over the whole uncertainty region. We can, again, apply
2-D level-crossing theory to obtain the CDF ofxs .

Q25Pr~xs.
1
2 I 0

21@exp~Es!#uno reflector is present!

512P1
Nb~g!, ~42!

whereg5I 0
21@exp(Es)#/2. We can find all other transition

probabilities in a similar way. Having all the transitio
probabilities, we can make anN-ary decision based on th
MAP rule and obtain our component-wise lower bound
the PCC for the case of position uncertainty.

5.3 Upper Bound on the PCC

To get an upper bound on the PCC, we assume that
have exact phase information for each reflector. Beca
this means we have more information for the classificat
task, the PCC for the optimum receiver in this case will
a valid upper bound on the PCC in the case of target w
random phases, which we are interested in. If we assum
target components are orthogonal, we can set the phas
be zero for all target component signals without loss
generality. Thus the formula for the radar return signal
similar to Eq.~28!, except that all exp(ifp) terms are left
out. Using this return signal model, the likelihood ratio f
the targetk with respect to target 0~the null hypothesis! is:

l k~r ;m1 ,...,mMk
,t1 ,...,tMk

!

5 )
p51

Mk

expS 2Epk12RH(
m

E
2`

`

dt

3spk
†

~m2mpk,t2tpk!•r ~m,t!J D , ~43!

whereEpk is the energy of thep’th component of thek’th
target, andR denotes the real part. The appearance of
R(g) ~g denotes the argument of theR operator! is due to
the fact that the probability density functionp(r uHk) has
the exponentEpkg1(Epkg)* andEpk is real. The equation
is similar to Eq.~35! but does not involve a Bessel func
tion. The generalized log likelihood ratio~GLLR! for the
targetk is thus:

GLLRk5 (
p51

Mk S 2Epk12 maxRH(
m

E
2`

`

dt

3spk
†

~m2mpk,t2tpk!•r ~m,t!J D
5 (

p51

Mk

~2Epk12ypk!. ~44!

Here, the statistics ofypk can be calculated via level
crossing theory. The probability of correct classification c
then be evaluated via



Yeang, Cho, and Shapiro: Target-recognition theory . . .
Fig. 11 Optimal processor and conventional processor PCC upper and lower bounds for the target
constellation specified in Table 3 when the target reflector locations are not known. Also included are
the results of 50000-trial computer simulations of these two processors.
Eq.
a
f
get
th
.
he

for
for
gth
nds
e-

nts
tor
for
m-

till
nal
on-
the
hes
-
ro-
res

s of
le,
dB

for
urn

to
tio
ion
this
ng
ures
an-
of
PCCuHi512Pr~erroruHi is true)

<12Pr~erroruHi is true, phase information given)

512PrS ø
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<12max

j Þ i
Pr~GLLRi

,GLLRj uHi is true, phase info given). ~45!

In the previous section we used de Caen’s inequality in
~33! to obtain a tighter lower bound on the probability of
union, which involves the joint probability distribution o
two Gaussian random variables. However, for this tar
setting, we cannot apply de Caen’s inequality, because
statistics of GLLRi are complicated. The formula in Eq
~45! can be calculated without difficulty, since we have t
statistics for the GLLRs.

5.4 Numerical Results

We obtained the lower and upper bounds on the PCC
the target setting specified in Table 3. Uncertain areas
the target reflectors were all set to squares with side len
of 10 cm. Figure 11 compares the lower and upper bou
on the PCC for the optimum whitening classifier with r
e

spect to those for the conventional classifier. It prese
similar features to those seen earlier for the known reflec
position example. Thus, although the PCC lower bound
the whitening processor is somewhat looser when co
pared with the simulation result, the optimal classifier s
has about 5-dB SNCR gain relative to the conventio
classifier. Note that there is a considerable gap, for the c
ventional processor, between the PCC lower bound and
simulation result, and neither of these curves approac
unity as 1/CNR→0, for the clutter appearing in the conven
tional processor is not as small as that in the optimum p
cessor when the noise is diminishing. Figure 12 compa
the whitening processor’s PCC simulations for the case
known and unknown reflector locations. In this examp
the uncertainty of reflector locations results in a 3- to 5-
SNCR penalty.

6 Conclusion

We develop a physics-based target recognition theory
SAR images. The basic idea is to construct radar-ret
signatures from electromagnetic scattering theory, and
apply conventional SAR processors and likelihood-ra
optimum processors to perform detection or classificat
based on these radar signatures. The contribution of
study is not one of new efficient or powerful processi
schemes for real radar data or complicated target signat
generated from CAD models. Instead, it theoretically qu
tifies the target-recognition performance improvement
2147Optical Engineering, Vol. 42 No. 7, July 2003
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Fig. 12 Comparison of optimal processor PCC simulations for the cases of known and unknown
reflector locations.
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adaptive-resolution, polarimetric, or whitening-filter pr
cessing, and provides physical interpretations for such
vantages.

The performance analysis for likelihood-based proc
sors for multicomponent target detectors shows that
fully polarimetric Neyman-Pearson processor has better
tection performance than the scalar Neyman-Pear
~adaptive-resolution! processor, which has performance s
perior to that of the conventional SAR processor. We d
covered that the effect of adaptive resolution can be imp
tant when the reflector size is much larger~for both
stripmap and spotlight mode! or smaller ~for spotlight
mode! than the diameter of antenna aperture. The per
mance analysis for multicomponent target classifiers a
indicates that the Neyman-Pearson processor outperfo
the conventional SAR processor for a richer reflector r
ertoire and a more complex target scenario: a signific
SNCR gain of about 5 dB. According to our estimation, t
optimum likelihood-ratio processor’s adaptive-resoluti
and polarimetric effects are comparable when
whitening-filter effect is negligible. We also found that th
binary discrete-memoryless-channel processor has q
close classification performances to those of the optim
processor, especially when the target locations are kno
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